首页 > > 详细

代写COMP5318/COMP4318 Machine Learning and Data Mining Week 13代做回归

项目预算:   开发周期:  发布时间:   要求地区:

COMP5318/COMP4318 Machine Learning and Data Mining

Week 13 Revision and Preparation for the Exam

s1 2025

Exercise 1. Markov models

Given is the following Markov model for the weather in Sydney:

 

If the weather yesterday was Rainy, and today is Foggy, what is the probability that tomorrow it will be Sunny?

Exercise 2. Hidden Markov models

Julia tested positive to COVID and had to quarantine at home for several days. Her friend Nicole came to bring her food every day. We don’t know what the weather was on the quarantine days but we know the type of clothing Nicole wore and it provides evidence about the weather.

The following Hidden Markov Model models the situation. The initial state probabilities are: A0(Sunny)=0.5 and A0(Cloudy)=0.5.

 

Suppose that on the first quarantine day Nicole wore a dress and on the second she wore a blazer.

a)  What is the probability of the observation sequence?

b)  What is the most likely sequence of hidden states?

Briefly show your calculations.

Exercise 3. Perceptron

Given is the following training set:

input                output

ex. 1:   1 0 0                  1

ex. 2:   0 1 1                 0

ex. 3:   1 1 0                  1

ex. 4:    1 1 1                 0

ex. 5:   0 0 1                 0

a) Train a perceptron with a bias on this training set. Assume that all initial weights (including the bias of the neuron) are 0. Show the set of weights (including the bias) at the end of the first epoch. Apply the examples in the given order.

Recall that the perceptron uses a step function defined as:

step(n) = 1, if n >= 0

= 0, otherwise.



软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!