Investment Modeling Spring 2019, Practice Set # 4
Use the code below to answer questions # 1-5.
library (data .table)
M3=data .frame (x=1:5,y=seq (2,10,2),z=7:3)
setDT(M3)
|
1. What is sum(M3[,3])?
2. What is sum(M3[,2])?
3. What is sum(M3+rep(2,5))?
4. What is M3[y¡6,x]?
5. What is sum(M3[,2]+M3[,x])?
Use the code below to answer questions # 6-7.
giants=c (2:5)
cowboys=rep (3,4)
eagles=c (6: giants[cowboys [2]])
|
6. What is x?
x= sum ( sum (giants)*eagles)
|
7. What is x?
x= sum (giants + c (eagles , cowboys[giants [1]]))
|
8. What is a?
a = 6:1
a[c (2,4)]= c (10,20)
|
9. What is a?
10. What is mm?
mm = c (1:9)
mm[2:4]= c (12,13,14)
|
11. What is mm?
mm = c (1:9)
mm[c (7,3:2)]= c (20,40,60)
|
12. Given the code below, what is a?
z = 3:1
a=0
for (i in z)
{
a=a-i
}
|
13. Given the code below, what is b?
x = 1:4
b=c (2,4,6,8)
for (i in x)
{
if ((i/2) >3)
{
b[NROW (b)]=i/2
}
else
{
b[(i/2)+2*i]=i/2
}
}
|
Use the table mdf below to answer questions from #14-19.
Ticker
|
Date
|
TotalAssets
|
TotalDebt
|
Price
|
FB
|
201703
|
150
|
30
|
4
|
FB
|
201706
|
100
|
25
|
1
|
FB
|
201709
|
500
|
100
|
3
|
FB
|
201712
|
100
|
20
|
5
|
AAPL
|
201703
|
200
|
100
|
2
|
AAPL
|
201706
|
150
|
30
|
4
|
AAPL
|
201709
|
300
|
15
|
6
|
AAPL
|
201712
|
100
|
10
|
8
|
TSLA
|
201703
|
250
|
50
|
4
|
TSLA
|
201706
|
200
|
40
|
10
|
TSLA
|
201709
|
350
|
70
|
6
|
TSLA
|
201712
|
150
|
50
|
5
|
14. Given the code below, what is tt?
z = 1:4
tt=head(mdf$Price ,5)
r=seq (2,10,2)
for (i in z)
{
for (x in r[c (1,3,5)])
{
tt[NROW (r)]=i+x
}
}
|
15. Given the code below, what is b?
v = head(mdf$Price ,9)
z = tail(v,5)
b=c ()
for (i in z)
{
if ((i -1) >=3 && (i-4) <=3)
{
b[NROW (b)+1]=i
}
else
{
b=c (b,i)
}
}
|
16. Given the code below, what is v?
v = c (2,4,10,5,2,8,12)
z=seq (2,12,mdf[Ticker== ’AAPL ’ & Date==201703, Price])
v[c (2:3,6)]=z[c (1,4:5)]
|
17. Given the code below, what is v?
stock=head(mdf ,4)
stockc = stock[,Price]
ret=c ()
for (i in 1:(NROW (stockc) -1))
{
ret[i]=(stockc[i+1] + stockc[i]) - 1
}
v=ret[1]
|