首页 > > 详细

代做A37847 Algebra & Combinatorics 2代写C/C++语言

项目预算:   开发周期:  发布时间:   要求地区:

A37847

2AC 06 25665 Level I

LI Algebra & Combinatorics 2

2AC3 06 27142 Level H

LH Algebra & Combinatorics 2

May/June Examinations 2023-24

Section A

1. (a)     (i)  State the second subring test.

(ii) Is a, b R} a subring of M2(R)? Justify your answer.

(iii) Is a subring of M2(R)? Justify your answer.

In 1(a), you may assume M2(R) is a ring with the usual matrix addition and multipli-cation operations. [8]

(b)     (i)  Let R and S be rings and let θ : R S.  Define what it means for θ to be a homo- morphism.

(ii)  Let a C. Define θa: C C by θa(x) = ax.

For which values of a is θa a homomorphism of rings?  For which values of a is θa an isomorphism of rings? Justify your answers.                                  [4]

(c)     (i)  Define what it means for a ring R to be an integral domain.

(ii)  Determine, with justification, the set {n N, n 2 |  Zn is an integral domain }.

You may assume that if a Z, then [a]n is a unit in Zn if and only if a and n are coprime. [6]

(d)  Let F5  = {0, 1, 2, 3, 4} be the field with 5 elements.  Let m(X) = X2 +2 ∈ F5[X], and let I = ⟨m(X)⟩ .

(i)  Prove that m(X) is irreducible in F5[X].

(ii)  Deduce that F5[X]/I is a field.

You may apply results from the lectures in (ii).

(iii)  Show that [X2]I = [2]I.

(iv)  Calculate [3X +2]I·[X +4]I, giving your answer in the form [aX +b]I where a, b F5 .                                                      [7]

2. (a)  State the rule of double counting.                                                                                                [3]

(b)  Define the combinatorial numbers {k(n)} and  [k(n)], for any 0 < k n.                                         [6]

(c)  What is the number of permutations on the set {1, . . . , n}  that have exactly two fixed points? Justify your answer.                       [6]

(d)  Show that a graph G = (V, E) that has maximum degree Δ(G) can be properly coloured

Section B

3. (a)  State the division theorem for polynomials over integral domains.                                             [2]

(b)  Let F be a field. Prove that every ideal of F[X] is principal.

You may assume that F[X] is an integral domain. [5]

(c)  Let R be an integral domain. Suppose that every ideal of R[X] is principal.

(i)  Let r R\{0} and consider the ideal I = ⟨r,X⟩ 彐 R[X]. Show that I = ⟨a⟩, where a U(R), and deduce that I = R[X].

(ii)  By considering 1 R[X] = r,X, or otherwise, show that r U(R). Deduce that R is a field.                             [6]

(d) In 3(d), you may apply results from the lectures provided you explain  which results you use and when you apply them.

Let α = 3+ 7 and let m(X) = X4 - 6X2 + 2 Z[X].   Let m (X) F7[X] be the polynomial obtained from m(X) by reduction modulo 7, and let g(X) = X2 +4 ∈ F7[X].

(i)  Show that g(X) is irreducible in F7[X].

(ii)  Show that m (X) = g(X)2 .

(iii)  By using (ii), or otherwise, show that m(X) is irreducible in Z[X].

(b)  Calculate the number of permutations on the set of numbers {1, . . . , n}, where n 2, that have exactly two cycles.                            [6]

(c)  For a graph G = (V, E), let χ(G), α (G) and ω (G) be its chromatic, independence and

clique number, respectively.  Suppose that G satisfies χ(G) = ω (G).  Show that  |V|  ≤ α (G)ω (G).                   [6]

(d)  Describe an algorithm that finds the smallest key in a given binary search tree. Prove that the algorithm you provided is correct.                                                        [7]





软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!