首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
EIE553代做、代写EIE553程序语言
项目预算:
开发周期:
发布时间:
要求地区:
EIE553 Lab 1 1
EIE553 Security in Data Communication
Lab 1: RSA Public-Key Encryption
and Signatures
Report Deadline: 11:59 pm, Mar. 2, 2025 HKT
(Credits: SEED Labs 2.0 by Prof. Du, Wenliang)
1 Overview
RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure
communication. The RSA algorithm first generates two large random prime numbers, and then use them
to generate public and private key pairs, which can be used to do encryption, decryption, digital signature
generation, and digital signature verification. The RSA algorithm is built upon number theories, and it can
be quite easily implemented with the support of libraries.
The learning objective of this lab is for students to gain hands-on experiences on the RSA algorithm.
From lectures, students should have learned the theoretic part of the RSA algorithm, so they know math ematically how to generate public/private keys and how to perform encryption/decryption and signature
generation/verification. This lab enhances student’s understanding of RSA by requiring them to go through
every essential step of the RSA algorithm on actual numbers, so they can apply the theories learned from
the class. Essentially, students will be implementing the RSA algorithm using the C program language. The
lab covers the following security-related topics:
• Public-key cryptography
• The RSA algorithm and key generation
• Big number calculation
• Encryption and Decryption using RSA
• Digital signature
• X.509 certificate
Lab environment: The SEED Lab series (including this one) has been tested on the SEED Ubuntu 20.04
VM. In our lab at CF105, the VM is pre-built and you can connect to it via:
1. Run Hyper-V Virtual Machine Connection
2. Select “SEED Ubuntu 20.04”
EIE553 Lab 1 2
3. Click Start
4. Input username: seed and password: dees
NOTE: The Ubuntu 20.04 VM is not strictly necessary. You can complete or implement the tasks
below using your preferred IDE (on your own PC) and programming language (though C/C++
is recommended).
NOTE: The PC might REBORN AFTER REBOOT AND SHARED WITH OTHER STUDENTS.
Save your work in an external drive and back up your files before rebooting or shutting down.
You also can download a pre-built image from the SEED website, and run VM on your own PC.
The setup can be found: https://seedsecuritylabs.org/labsetup.html (for either Intel/Apple/AMD CPU)
How to build SEED VM: https://github.com/seed-labs/seed-labs/blob/master/manuals/vm/seedvm-from scratch.md
A step-by-step guideline (prepared by TAs) on how to build SEED VM on a Windows PC has been
uploaded to Blackboard for your reference.
2 Background
The RSA algorithm involves computations on large numbers. These computations cannot be directly con ducted using simple arithmetic operatorsin programs, because those operators can only operate on primitive
data types, such as 32-bit integer and 64-bit long integer types. The numbers involved in the RSA algorithms
are typically more than 512 bits long. For example, to multiple two 32-bit integer numbers a and b, we just
EIE553 Lab 1 3
// Assign a value from a decimal number string
BN_dec2bn(&a, "12345678901112231223");
// Assign a value from a hex number string
BN_hex2bn(&a, "2A3B4C55FF77889AED3F");
// Generate a random number of 128 bits
BN_rand(a, 128, 0, 0);
// Generate a random prime number of 128 bits
BN_generate_prime_ex(a, 128, 1, NULL, NULL, NULL);
void printBN(char *msg, BIGNUM * a)
{
// Convert the BIGNUM to number string
char * number_str = BN_bn2dec(a);
// Print out the number string
printf("%s %s\n", msg, number_str);
// Free the dynamically allocated memory
OPENSSL_free(number_str);
}
need to use a*b in our program. However, if they are big numbers, we cannot do that any more; instead,
we need to use an algorithm (i.e., a function) to compute their products.
There are several libraries that can perform arithmetic operations on integers of arbitrary size. In this
lab, we will use the Big Number library provided by openssl. To use this library, we will define each big
number as a BIGNUM type, and then use the APIs provided by the library for various operations, such as
addition, multiplication, exponentiation, modular operations, etc.
2.1 BIGNUM APIs
All the big number APIs can be found from https://linux.die.net/man/3/bn. In the following,
we describe some of the APIs that are needed for this lab.
• Some of the library functions requires temporary variables. Since dynamic memory allocation to cre ate BIGNUMs is quite expensive when used in conjunction with repeated subroutine calls, a BN CTX
structure is created to holds BIGNUM temporary variables used by library functions. We need to
create such a structure, and pass it to the functions that requires it.
BN_CTX *ctx = BN_CTX_new()
• Initialize a BIGNUM variable.
BIGNUM *a = BN_new()
• There are a number of ways to assign a value to a BIGNUM variable.
• Print out a big number.
EIE553 Lab 1 4
BN_sub(res, a, b);
BN_add(res, a, b);
/* bn_sample.c */
#include
#include
#define NBITS 256
void printBN(char *msg, BIGNUM * a)
{
/* Use BN_bn2hex(a) for hex string
* Use BN_bn2dec(a) for decimal string */
char * number_str = BN_bn2hex(a);
printf("%s %s\n", msg, number_str);
OPENSSL_free(number_str);
}
int main ()
{
BN_CTX *ctx = BN_CTX_new();
BIGNUM *a = BN_new();
BIGNUM *b = BN_new();
BIGNUM *n = BN_new();
BIGNUM *res = BN_new();
• Compute res = a −b and res = a + b:
• Compute res = a ∗b. It should be noted that a BN CTX structure is need in this API.
BN_mul(res, a, b, ctx)
• Compute res = a ∗b mod n:
BN_mod_mul(res, a, b, n, ctx)
• Compute res = ac mod n:
BN_mod_exp(res, a, c, n, ctx)
• Compute modular inverse, i.e., given a, find b, such that a ∗ b mod n = 1. The value b is called
the inverse of a, with respect to modular n.
BN_mod_inverse(b, a, n, ctx);
2.2 A Complete Example
We show a complete example in the following. The program can be found from the Labsetup.zip file
that you can download from the lab’s webpage. In this example, we initialize three BIGNUM variables, a,
b, and n; we then compute a ∗b and (ab mod n).
EIE553 Lab 1 5
$ vim bn_sample.c
$ gcc bn_sample.c -lcrypto -o output
$ ./output
Compilation. We can use the following command to compile bn_sample.c (the character after - is the
letter £, not the number 1; it tells the compiler to use the crypto library).
Click “Open in Terminal”
Create bn_sample.c file
Paste your code into the file, Press Esc on your keyboard, input “: wq” to save file and quit.
Complie bn_sample.c
Run bn_sample.c
// Initialize a, b, n
BN_generate_prime_ex(a, NBITS, 1, NULL, NULL, NULL);
BN_dec2bn(&b, "273489463796838501848592769467194369268");
BN_rand(n, NBITS, 0, 0);
// res = a*b
BN_mul(res, a, b, ctx);
printBN("a * b = ", res);
// res = aˆb mod n
BN_mod_exp(res, a, b, n, ctx);
printBN("aˆc mod n = ", res);
return 0;
}
EIE553 Lab 1 6
p = F7E75FDC469067FFDC4E847C51F452DF
q = E85CED54AF57E53E092113E62F436F4F
e = 0D88C3
$ python3 -c ’print("A top secret!".encode("utf-8").hex())’
4120746f702073656372657421
3 Lab Tasks
NOTE: You must explicitly disclose the use of any GenAI tools (e.g., ChatGPT and DeepSeek) if utilized
in completing the tasks below.
3.1 Task 1: Deriving the Private Key (20 marks)
Let p, q, and e be three prime numbers. Let n = p*q. We will use (e, n) as the public key. Please
calculate the private key d. The hexadecimal values of p, q, and e are listed in the following. It should be
noted that although p and q used in this task are quite large numbers, they are not large enough to be secure.
We intentionally make them small for the sake of simplicity. In practice, these numbers should be at least
512 bits long (the one used here are only 128 bits).
Hint: The private key d (which is multiplicative inverse of e mod n) can be computed via the extended Euclidean
algorithm (introduced in Lecture 4). The pseudocode is
Input:
- Public key (N, e)
- Prime factors p and q of N (N = pq)
Output:
- Private key d
Steps:
1. Compute ϕ(N) = (p - 1) * (q - 1) // Euler's totient function
2. Use the Extended Euclidean Algorithm to find d such that:
(e * d) ≡ 1 mod ϕ(N)
Extended Euclidean Algorithm:
Function ExtendedEuclidean(a, b):
If b == 0:
Return (a, 1, 0) // gcd(a, b) = a, and coefficients x = 1, y = 0
Else:
(gcd, x1, y1) = ExtendedEuclidean(b, a mod b)
x = y1
y = x1 - (a // b) * y1
Return (gcd, x, y)
3. (gcd, d, _) = ExtendedEuclidean(e, ϕ(N))
4. If gcd != 1:
Return "No modular inverse exists (e and ϕ(N) are not coprime)"
Else:
Ensure d is positive by computing d = d mod ϕ(N)
Return d
3.2 Task 2: Encrypting a Message (20 marks)
Let (e, n) be the public key. Please encrypt the message "A top secret!" (the quotations are not
included). We need to convert this ASCII string to a hex string, and then convert the hex string to a BIGNUM
using the hex-to-bn API BN hex2bn(). The following python command can be used to convert a plain
ASCII string to a hex string.
SEED Labs 2.0 VM (Ubuntu 20.04.2 LTS):
SEED Labs 1.0 VM (Ubuntu 16.04 LTS):
EIE553 Lab 1 7
n = DCBFFE3E51F62E09CE7032E2677A78946A849DC4CDDE3A4D0CB81629242FB1A5
e = 010001 (this hex value equals to decimal 65537)
M = A top secret!
d = 74D806F9F3A62BAE331FFE3F0A68AFE35B3D2E4794148AACBC26AA381CD7D30D
C = 8C0F971DF2F3672B28811407E2DABBE1DA0FEBBBDFC7DCB67396567EA1E2493F
$ python3 -c
’print(bytes.fromhex("4120746f702073656372657421").decode("utf-8"))’
A top secret!
M = I owe you $2000.
M = Launch a missile.
S = 643D6F34902D9C7EC90CB0B2BCA36C47FA37165C0005CAB026C0542CBDB6802F
e = 010001 (this hex value equals to decimal 65537)
n = AE1CD4DC432798D933779FBD46C6E1247F0CF1233595113AA51B450F18116115
The public keys are listed in the followings (hexadecimal). We also provide the private key d to help
you verify your encryption result.
Requirement: In your lab report, you should change the message to "Your Name + Student ID" instead of using
"A top secret!" in the above demo.
3.3 Task 3: Decrypting a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please decrypt the following
ciphertext C, and convert it back to a plain ASCII string.
You can use the following python command to convert a hex string back to to a plain ASCII string
(works in both VM versions).
Requirement: In your lab report, you should decrypt the ciphertext of "Your Name + Student ID" instead of
using "A top secret!" in the above demo.
3.4 Task 4: Signing a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please generate a signature
for the following message (please directly sign this message, instead of signing its hash value):
Please make a slight change to the message M, such as changing $2000 to $3000, and sign the modified
message. Compare both signatures and describe what you observe.
Requirement: In your lab report, you should change the message to "Your PolyU email address" instead of
using "I owe you $2000" in the above demo.
3.5 Task 5: Verifying a Signature (20 marks)
Bob receives a message M = "Launch a missile." from Alice, with her signature S. We know that
Alice’s public key is (e, n). Please verify whether the signature is indeed Alice’s or not. The public key
and signature (hexadecimal) are listed in the following:
Suppose that the signature above is corrupted, such that the last byte of the signature changes from 2F
to 3F, i.e, there is only one bit of change. Please repeat this task, and describe what will happen to the
verification process.
$ python -c ’print("A top secret!".encode("hex"))’
4120746f702073656372657421
EIE553 Lab 1 8
$ openssl s_client -connect www.example.org:443 -showcerts
Certificate chain
0 s:/C=US/ST=California/L=Los Angeles/O=Internet Corporation for Assigned
Names and Numbers/OU=Technology/CN=www.example.org
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High Assurance
Server CA
-----BEGIN CERTIFICATE-----
MIIF8jCCBNqgAwIBAgIQDmTF+8I2reFLFyrrQceMsDANBgkqhkiG9w0BAQsFADBw
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
wDSiIIWIWJiJGbEeIO0TIFwEVWTOnbNl/faPXpk5IRXicapqiII=
-----END CERTIFICATE-----
1 s:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High
Assurance Server CA
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert High Assurance
EV Root CA
-----BEGIN CERTIFICATE-----
MIIEsTCCA5mgAwIBAgIQBOHnpNxc8vNtwCtCuF0VnzANBgkqhkiG9w0BAQsFADBs
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
cPUeybQ=
-----END CERTIFICATE-----
3.6 (Optional) Task 6: Manually Verifying an X.509 Certificate (20 marks) (Optional)
In this task, we will manually verify an X.509 certificate using our program. An X.509 contains data about
a public key and an issuer’s signature on the data. We will download a real X.509 certificate from a web
server, get its issuer’s public key, and then use this public key to verify the signature on the certificate.
Step 1: Download a certificate from a real web server. We use the www.example.org server in
this document. Students should choose a different web server that has a different certificate than the
one used in this document (it should be noted that www.example.com share the same certificate with
www.example.org). We can download certificates using browsers or use the following command:
The result of the command contains two certificates. The subject field (the entry starting with s:) of
the certificate is www.example.org, i.e., this is www.example.org’s certificate. The issuer field (the
entry starting with i:) provides the issuer’s information. The subject field of the second certificate is the
same as the issuer field of the first certificate. Basically, the second certificate belongs to an intermediate
CA. In this task, we will use CA’s certificate to verify a server certificate.
If you only get one certificate back using the above command, that means the certificate you get is signed
by a root CA. Root CAs’ certificates can be obtained from the Firefox browser installed in our pre-built VM.
Go to the Edit ➔ Preferences ➔ Privacy and then Security ➔ View Certificates. Search
for the name of the issuer and download its certificate.
Copy and paste each of the certificate (the text between the line containing "Begin CERTIFICATE"
and the line containing "END CERTIFICATE", including these two lines) to a file. Let us call the first one
c0.pem and the second one c1.pem.
Step 2: Extract the public key (e, n) from the issuer’s certificate. Openssl provides commands to
extract certain attributes from the x509 certificates. We can extract the value of n using -modulus. There
is no specific command to extract e, but we can print out all the fields and can easily find the value of e.
EIE553 Lab 1 9
$ openssl x509 -in c0.pem -text -noout
...
Signature Algorithm: sha256WithRSAEncryption
84:a8:9a:11:a7:d8:bd:0b:26:7e:52:24:7b:b2:55:9d:ea:30:
89:51:08:87:6f:a9:ed:10:ea:5b:3e:0b:c7:2d:47:04:4e:dd:
......
5c:04:55:64:ce:9d:b3:65:fd:f6:8f:5e:99:39:21:15:e2:71:
aa:6a:88:82
$ cat signature | tr -d ’[:space:]:’
84a89a11a7d8bd0b267e52247bb2559dea30895108876fa9ed10ea5b3e0bc7
......
5c045564ce9db365fdf68f5e99392115e271aa6a8882
Step 3: Extract the signature from the server’s certificate. There is no specific opensslcommand to
extract the signature field. However, we can print out all the fields and then copy and paste the signature
block into a file (note: if the signature algorithm used in the certificate is not based on RSA, you can find
another certificate).
We need to remove the spaces and colons from the data, so we can get a hex-string that we can feed into
our program. The following command commands can achieve this goal. The tr command is a Linux utility
tool for string operations. In this case, the -d option is used to delete ":" and "space" from the data.
Step 4: Extract the body of the server’s certificate. A Certificate Authority (CA) generatesthe signature
for a server certificate by first computing the hash of the certificate, and then sign the hash. To verify the
signature, we also need to generate the hash from a certificate. Since the hash is generated before the
signature is computed, we need to exclude the signature block of a certificate when computing the hash.
Finding out what part of the certificate is used to generate the hash is quite challenging without a good
understanding of the format of the certificate.
X.509 certificates are encoded using the ASN.1 (Abstract Syntax Notation.One) standard, so if we can
parse the ASN.1 structure, we can easily extract any field from a certificate. Openssl has a command called
asn1parse used to extract data from ASN.1 formatted data, and is able to parse our X.509 certificate.
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 16 prim: INTEGER
:0E64C5FBC236ADE14B172AEB41C78CB0
... ...
1236:d=4 hl=2 l= 12 cons: SEQUENCE
1238:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
1243:d=5 hl=2 l= 1 prim: BOOLEAN :255
For modulus (n):
$ openssl x509 -in c1.pem -noout -modulus
Print out all the fields, find the exponent (e):
$ openssl x509 -in c1.pem -text -noout
EIE553 Lab 1 10
$ openssl asn1parse -i -in c0.pem -strparse 4 -out c0_body.bin -noout
$ sha256sum c0_body.bin
The field starting from 。 is the body of the certificate that is used to generate the hash; the field starting
from @ is the signature block. Their offsets are the numbers at the beginning of the lines. In our case, the
certificate body is from offset 4 to 1249, while the signature block is from 1250 to the end of the file. For
X.509 certificates, the starting offset is always the same (i.e., 4), but the end depends on the content length
of a certificate. We can use the -strparse option to get the field from the offset 4, which will give us the
body of the certificate, excluding the signature block.
Once we get the body of the certificate, we can calculate its hash using the following command:
Step 5: Verify the signature. Now we have all the information, including the CA’s public key, the CA’s
signature, and the body of the server’s certificate. We can run our own program to verify whether the
signature is valid or not. Openssl does provide a command to verify the certificate for us, but students are
required to use their own programs to do so, otherwise, they get zero credit for this task.
4 Submission
You need to submit a detailed lab report, with screenshots, to describe what you have done
and what you have observed. You also need to provide explanation to the observations that
are interesting or surprising. Please also list the important code snippets followed by
explanation. Simply attaching code without any explanation will not receive credits.
OCTET STRING
OBJECT
NULL
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写cs918 sentiment classifi...
2025-04-02
代做llp714 corporate social ...
2025-04-02
代做cs 338 – winter 2025 as...
2025-04-02
代做21797 strategic supply c...
2025-04-02
代做ee 5711: power electroni...
2025-04-02
代写llaw6055 law of internat...
2025-04-02
代写dts208tc data analytics ...
2025-04-02
代做bees2041 data analysis f...
2025-04-02
代做econ154 business statist...
2025-04-02
代写cit 596 - hw5代做留学生j...
2025-04-02
代做data driven business代写...
2025-04-02
代写envi5705 – assessment 2...
2025-04-02
代写econ154 - statistical fo...
2025-04-02
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!