首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写CS536、代做C/C++,Java编程
项目预算:
开发周期:
发布时间:
要求地区:
CS536 Assignment 3
Due: Feb 28th, 2025
Early Bird Due: Feb 26th, 2025
(Ethics: Any behavior on any homework or exam that could be considered copying or cheating will result in an immediate zero on the assignment
for all parties involved. See the IIT Code of Academic Honesty,)
1. Remember that Σ is the collection of all well-formed states, and Σ⊥ = Σ ∪ {⊥}. Decide true or false for each of
the following statements, justify your answers briefly.
a. If 𝜎(𝑝) =⊥, then ⊭ ¬𝑝.
b. Let 𝜏 ∈ Σ⊥, then 𝜏 ⊨ 𝑝 or 𝜏 ⊨ ¬𝑝.
c. Let Σ0 ⊆ Σ and Σ0 ⊨ 𝑝, also let 𝜏 ⊨ 𝑝; then Σ0 ∪ {𝜏} ⊨ 𝑝.
d. ∅ ⊨ 𝑝 and ∅ ⊨ ¬𝑝 (∅ represents an empty collection of states).
e. Let Σ0 ⊂ Σ, then Σ0 ⊨ 𝑥 > 1 or Σ0 ⊨ 𝑥 ≤ 1.
2. Calculate denotational semantics for the following nondeterministic programs.
a. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐟𝐢, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐼𝐹, 𝜎1) and show your work.
b. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐟𝐢, and let 𝜎2
(𝑥) = 𝜎2
(𝑦) = 1. Calculate 𝑀(𝐼𝐹, 𝜎2) and show your work.
c. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐨𝐝, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐷𝑂, 𝜎1) and show your work.
d. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐨𝐝, and let 𝜎2
(𝑥) = 𝜎2
(𝑦) = 1. Calculate 𝑀(𝐷𝑂, 𝜎2) and show your work.
3. Let 𝑏 be an array of size 𝑛 ≥ 1, and ∀0 ≤ 𝑖 < 𝑛. 𝑏[𝑖] = 0 ∨ 𝑏[𝑖] = 1. Decide which number (0 𝑜𝑟 1) is the
majority in 𝑏 without counting their quantities.
Write a program named 𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 in our language that can solve the above problem and bind the majority
among 0 and 1 to variable 𝑚𝑎𝑗𝑜𝑟. You can assume that 𝑏 is written in the memory state; and to simplify the
question, we artificially define 𝑏[𝑛] = 100, so you don’t need to worry about a possible runtime error when the
array index reaches 𝑛. Your program doesn’t have to be deterministic. Be careful of the grammar in our
programming language.
Here are some hints:
1) We can use the following linear-search-like algorithm: scan the array 𝑏 to pair up each 0 with a 1. Once we
have some 1′𝑠 left over, then 1 is the majority; once we have some 0′𝑠 left over, then 0 is the majority; if
we can pair up all numbers, then either of them can be the majority.
2) A student named Jason wrote a partial solution that could be useful to solve the above problem:
𝐽 ≡ 𝐝𝐨 𝑏[𝑘0
] = 1 → 𝑘0 ≔ 𝑘0 +1 ◻ 𝑏[𝑘1
] = 0 → 𝑘1 ≔ 𝑘1 + 1 𝐨𝐝
Consider 𝑘0 and 𝑘1 as pointers for number 0 and 1 respectively. What program 𝐽 does is to find the next
𝑘0 and 𝑘1
such that 𝑏[𝑘0
] = 0 and 𝑏[𝑘1
] = 1. You can use 𝐽 inside of your program.
4. Decide true or false for each of the following statements, justify your answers briefly.
a. If 𝑀(𝑆, 𝜎) contains exactly one state, then 𝑆 is a deterministic statement.
b. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊨ 𝑝.
c. If 𝜎 ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭ 𝑝.
d. If 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, then 𝑀(𝑆, 𝜎) ⊨ 𝑞.
e. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}.
5. Answer the following questions about possible values of variable 𝑥 in a state. Justify your answer briefly.
a. Let ⊥𝑒∉ 𝑀(𝑆, 𝜎), where 𝑆 ≡ 𝑥 ∶= 𝑠𝑞𝑟𝑡(𝑥) / 𝑏[𝑥] and 𝜎(𝑏) = (3, 0,−2, 4). What are the possible values
of 𝜎(𝑥)?
b. Let 𝜎 ⊨ {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 −2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
c. Let 𝜎 ⊨𝑡𝑜𝑡 {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 − 2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
6. Let predicate function 𝑃(𝑘, 𝑠) ≡ 𝑠
2 ≤ 𝑘 ≤ (𝑠 + 1)
2
. For each of the following triples, decide whether it is valid
under total correctness, justify your answer briefly.
a. {𝑃(𝑘, 𝑠 +1)} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑠)}
b. {𝑃(𝑘, 𝑠)} 𝑠 ≔ 𝑠 +1 {𝑃(𝑘, 𝑠 + 1)}
c. {𝑃(𝑘, 𝑠) ∧ 𝑠 < 0} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
d. {𝑃(𝑘, 𝑠) ∧ 𝑠 = 𝑥} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑥)}
e. {𝑃(𝑘 +1, 𝑠 + 1)} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
7. Let 𝜎 ⊨ {𝑝1
} 𝑆 {𝑞1
} and 𝜎 ⊨ {𝑝2
} 𝑆 {𝑞2
}. Decide whether 𝜎 necessarily satisfies the following triples under
partial correctness, justify your answer briefly.
a. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
b. {𝑝1 ∨ 𝑝2
} 𝑆 {𝑞1 ∨ 𝑞2
}
c. {𝑝1 ∨ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
8. Let ⊨𝑡𝑜𝑡 {𝑝1
} 𝑆 {𝑞1
} and ⊨𝑡𝑜𝑡 {𝑝2
} 𝑆 {𝑞2
}. Decide whether the following triples are valid under total
correctness, justify your answer briefly.
a. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
b. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∨ 𝑞2
}
c. {𝑝2
} 𝑆 {𝑞1 → 𝑞2
}
Hints for questions 7 and 8:
1) Remember that 𝜎 ⊨ 𝑝 ∧ 𝑞 means “𝜎 ⊨ 𝑝 and 𝜎 ⊨ 𝑞”; 𝜎 ⊨ 𝑝 ∨ 𝑞 means “𝜎 ⊨ 𝑝 or 𝜎 ⊨ 𝑞”.
2) To prove 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, you can prove that “if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎)−⊥ ⊨ 𝑞”.
3) To prove ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, you can prove that “for any state 𝜎, if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎) ⊨ 𝑞”.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写tutorial 5 structured qu...
2025-02-21
代写homework 6: measuring bi...
2025-02-21
代做problem set 1代写process...
2025-02-21
代写f24 adms 3541 case study...
2025-02-21
代写lang7402 introduction to...
2025-02-21
代写english language and stu...
2025-02-21
代写programming assignment 1...
2025-02-21
代做economics 496: undergrad...
2025-02-21
代做6com2005 practical assig...
2025-02-21
代做acct608 – financial acc...
2025-02-21
代做java lab 1帮做java编程
2025-02-21
代写mktg5001 task 1a project...
2025-02-21
代写cs 230 winter 2024 tutor...
2025-02-21
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!