首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MATH70094代做、代写Python语言编程
项目预算:
开发周期:
发布时间:
要求地区:
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Assessment 4
This assessment contains two questions that will test your ability to work with files and data in
R and Python, as well as how to create and package your code in these two languages. Question
1 is on R, while Question 2 is on Python. The available marks are indicated in brackets for each
question. Note that this assessment will count 50% towards the final grade for this module. This
assessment will be marked, and feedback will be provided.
Make sure that you carefully read the following sections on Background and Submission Instruc tions.
Background
In this assessment, we want to build a spam classifier to decide for a given message string if it is a
genuine message (ham) that we want to keep, or if it is not a genuine message (spam) that should be
filtered out. A message can be thought of as a random sequence of words, but since we hardly ever
see the same message twice it is common to ignore the word order, and to simply record how many
times each word appears. We therefore represent a message by a random vector X ∈ {0, 1, 2, . . . , }
p
with counts for a vocabulary of p words. The vocabulary stays fixed for all the messages.
Denote by P r(X) the probability of a specific message, let S be the event that X corresponds to
spam and let H be the complementary event that X is ham. From Bayes’ theorem the probability of
X being spam is
P r(S|X) = P r(X|S)P r(S)
P r(X)
.
Here, P r(S) is the prior probability of an arbitrary message being spam, and P r(X|S) is the
probability to see message X given that we know it is spam. Similarly, the probability of X being
ham is
P r(H|X) = P r(X|H)P r(H)
P r(X)
.
If P r(S|X) > P r(H|X), we classify the message X as spam, otherwise as ham.
To simplify the estimation of the probabilities P r(X|S) and P r(X|H) from training data we make
a second simplifying assumption, namely we assume that the probability of any word appearing in a
message is independent of any other word appearing or not. This means
P r(X|S) =
p
Y
j=1
P r(Xj |S), P r(X|H) =
p
Y
j=1
P r(Xj |H),
where Xj is the count of the jth word in the vocabulary. With these assumptions, the classifier is
called Naive Bayes classifier. Despite its simplicity, it works surprisingly well in practice.
Suppose now we have training data represented by a matrix M ∈ {0, 1, 2, . . . }
n×p
containing words
counts for n messages and a vector spam_type ∈ {ham, spam}
n assigning each message to a label
ham or spam. For example, Mij is the number of times word j appears in message i and spam_typei
is its label. By combining the information in M and spam_type we can compute nS and nH, the
1
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
total number of spam and ham messages, nS,j and nH,j the number of times the jth word appears in
spam and ham messages, as well as NS and NH the total number of words in spam and ham messages.
With this we form the estimates
P r(S) ≈
nS
nS + nH
,
P r(H) ≈
nH
nS + nH
,
P r(Xj |S) ≈
nS,j + α
NS + α × (NS + NH)
,
P r(Xj |H) ≈
nH,j + α
NH + α × (NS + NH)
.
The scalar α ∈ (0, 1] helps preventing zero estimates. Note that by applying the logarithm,
P r(S|X) > P r(H|X) is equivalent to
p
X
j=1
log P r(Xj |S) + log P r(S) >
p
X
j=1
log P r(Xj |H) + log P r(H).
To avoid numerical errors when multiplying many near zero numbers in the approximation of the
products Q p
j=1 P r(Xj |S) and Q p
j=1 P r(Xj |H) from the estimates above, it is therefore better to
base the classification on the logarithms of the estimates.
Submission Instructions
Along with this PDF, you are provided with two folders files_train and files_test which
contain within subfolders messages (formed of strings), and two files train.csv and test.csv.
Create files according to the two questions below, and then create one zip file (https://docs.filefor
mat.com/compression/zip/) named CID_PDS_Assessment4.zip with:
• the files train.csv and test.csv,
• a folder corpus, containing your R package files,
• a folder spamfilter, containing your Python package files,
• the corpus_0.0.1.tar.gz file created in Question 1,
• the file process_corpus.R created in Question 1,
• the file filter.py created in Question 2.
This can be visualised as follows:
CID_PDS_Assessment4.zip
|-- train.csv
|-- test.csv
|-- corpus folder
|-- spamfilter folder
|-- corpus_0.0.1.tar.gz
|-- process_corpus.R
|-- filter.py
2
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Note the following before submitting:
• Do not add the folders files_train and files_test to your zip file.
• Replace CID in CID_PDS_Assessment4.zip by your own college ID number. For
example, if your college ID number is 12345678, then the zip file should be named
12345678_PDS_Assessment4.zip.
• The only external Python and R libraries allowed in this assessment are:
– Python: NumPy, Pandas, unittest,
– R: testthat, R6, stringr, stopwords
You should not load additional (non-base) libraries.
• For Python, provide doc string comments, and for R roxygen2 style comments (as described
in the Blackboard videos of week 9) for every attribute and method you define. You also
should add code comments as usual.
• Please answer in each cell/code block only the corresponding subpart (e.g., only answer Part
D(i) in the cell below the heading Part D(i)). The markers will try, where possible, not to
penalize answers to parts for errors in previous parts. For example, if you cannot do Part D(i),
leave the corresponding cell blank and do Part D(ii) assuming Part D(i) is working.
• You may use code and variables from previous subparts in your answers of a particular part.
• Marks may be deducted if these layout and format instructions are not followed.
Submit the zip file on Blackboard in the Assessment 4 submission tab in the module page. The
deadline is Monday 06 January 2025 at 09:00am, UK time.
Please note Imperial College’s policy on the late submission of assessments. This assessment must
be attempted individually. Your submission must be your own, unaided work. Candidates are
prohibited from discussing assessed coursework, and must abide by Imperial College’s rules. Enabling
other candidates to plagiarise your work constitutes an examination offence. To ensure quality
assurance is maintained, departments may choose to invite a random selection of students to an
‘authenticity interview’ on their submitted assessments.
Question 1 - R (60 marks)
The aim of this question is to build a package for loading and cleaning messages from data.
Some functions that may be useful in this question are:
• gsub, sapply, readLines, Filter,
• str_split from the stringr package,
• stopwords("en") from the stopwords package.
3
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Code clarity (5 marks)
There is a famous saying among software developers that code is read more often than it is written.
Five marks will be awarded (or not awarded) based on the clarity of the code and appropriate use
of comments.
Part A (25 marks)
Create a script file corpus.R with a R6 class CorpusR6 containing
• private attributes: ham_strings (vector of strings), spam_strings (vector of strings),
• public methods:
– initialize: a function that takes the string name of a source folder as input, reads for
each message file in this folder (and also within subfolders) the contents of the file line
by line, and adds the message text (without the message head) either to spam_strings
or ham_strings depending on if the file name contains the substring "spam" or not.
– clean_messages: a function that modifies all the messages stored in the two private
variables; it proceeds for each message string as follows:
∗ transforms the message string to lower case,
∗ splits the string into words (tokens) separated by arbitrary long whitespace and
creates with these words a vector of strings,
∗ removes from the end of each token any arbitrary sequence of punctuations,
∗ removes any token that belongs to the list of English stopwords obtained from calling
stopwords("en"),
∗ removes from each token any remaning punctuations,
∗ remove all tokens of length less than three,
∗ collapses the vector of tokens into one string, with tokens separated by whitespace.
(We will not make more modifications to the tokens, even though we could.)
– print: a function that prints the CorpusR6 object. For example, when corpus is a
CorpusR6 object formed of 4345 ham messages and 673 spam messages, then we have as
output
> corpus
CorpusR6 object
Number of Ham files: 4345
Number of Spam files: 673
– save_to_csv: a function that takes the name of a target csv file as input and saves to
it a csv file that contains in each line either ham or spam and separated from this by a
comma a message string, either from ham_string or message_string corresponding to
the first column (the format should be as in the provided files train.csv and test.csv).
4
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
In addition to providing these attributes and functions, include appropriate documentation, input
checks (for every argument!) and unit tests, which test all specifications listed above.
Part B (15 marks)
Create a package called corpus which contains the code from Part A and exposes the func tions in Part A to the user. Make sure that devtools::document(), devtools::test() and
devtools::check() do not produce any errors or warnings (notes are OK) when called from within
the folder corpus. The result should be the file corpus_0.0.1.tar.gz, if you have chosen version
number 0.0.1.
Part C (15 marks)
Make sure that the class from Part A is available. Create a script file process_corpus.R which cre ates two CorpusR6 objects corpus_train and corpus_test from the provided folders files_train
and files_test (you should set a path that works for you, the markers will set another one, make
sure these folders are not part of the final zip file!). For the two objects, clean all messages that
were contained in the folders using clean_messages and print the R6 objects to the screen. Finally,
use save_to_csv to save corpus_train to the file train.csv and corpus_test to test.csv.
The two csv files should contain the same entries as the provided files.
Question 2 - Python (90 marks)
The aim of this question is to build a package for spam classification with Naive Bayes using Test
driven development and Defensive Programming, along with an application to a real data set.
Code clarity (5 marks)
There is a famous saying among software developers that code is read more often than it is written.
Five marks will be awarded (or not awarded) based on the clarity of the code and appropriate use
of comments.
Part A (20 marks)
Create a script file utils.py with three functions:
• tokenize: A function that takes a message string as input, splits it into words (tokens) along
whitespace and returns a list with the token strings. There should be no whitespace left
anywhere within the token strings.
5
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
• document_terms: A function that takes a list of word lists each created with tokenize as
input and returns a Document Term Dataframe. This Dataframe has as many rows as there
are word lists in the list, and has as many columns as there are unique words in the word lists.
Each column corresponds to one word, and each entry of the Dataframe counts how many
times a word appears in a document/message (the Dataframe is basically the matrix M from
the Background section).
• compute_word_counts: A function that takes a Document Term Dataframe (created with
document_terms) and a list spam_types of strings (with entries either ham or spam) as inputs,
and returns a 2 × p matrix with counts, where p is the length of the vocabulary, and where
the first row contains the overall counts for words in ham messages and the second row for
spam messages.
In addition to providing these functions, include appropriate documentation, input checks (for every
argument!) and unit tests, which test all specifications listed above.
For example, for the first function we expect the following output:
>>> tokenize(" properly separated text")
['properly', 'separated', 'text']
As an example for the latter two functions, suppose we have the following:
>>> doc1 = ["call", "here", "win", "prize", "money"]
>>> doc2 = ["call", "money", "call", "money", "bargain"]
>>> doc3 = ["call", "here", "information"]
>>> word_lists = [doc1, doc2, doc3]
>>> dtm = document_terms(word_lists)
>>> spam_types = ["spam", "spam", "ham"]
>>> word_counts = compute_word_counts(dtm,spam_types)
In this case, dtm should be
call here win prize money bargain information
1 1 1 1 1 1 0 0
2 2 0 0 0 2 1 0
3 1 1 0 0 0 0 1
while word_counts should be
call here win prize money bargain information
n_ham 1 1 0 0 0 0 1
n_spam 3 1 1 1 3 1 0
6
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Part B (25 marks)
Create a script file classifier.py with a class NaiveBayes containing
• private attributes: __word_counts (a matrix), __spam_types (a list),
• public attributes: log_probs_ham (a list containing the logs of the approximated P r(Xj |H)
from the Background section), log_probs_spam (a list containing the logs of the approximated
P r(Xj |S)), log_prior_ham (the log of the approximated P r(H)), log_prior_spam (the log
of the approximated P r(S)),
• public methods:
– __init__: a function that takes word_counts and spam_types as arguments, and sets
the two corresponding private attributes;
– get_spam_types: a function that returns the private attribute spam_types;
– get_word_counts: a function that returns the private attribute word_counts;
– fit: a function that takes as argument an α value (with default α = 0.5), and sets the
values of the public attributes as described in the Background section;
– classify: a function that takes a message string, tokenizes it using the method tokenize
from Part A and returns a classification ham or spam, as explained in the Background
section; words in the message that were not seen in the training data are ignored;
– print: a print method that prints the object as specified in the example below.
In addition to providing this class, include appropriate documentation and unit tests, which test all
specifications listed above.
Continuing the example from Part A we should obtain
>>> nb <- NaiveBayes(word_counts,spam_types)
>>> nb.fit(1)
>>> nb
NaiveBayes object
vocabulary size: 7
top 5 ham words: call,here,information,win,prize
top 5 spam words: call,money,here,win,prize
(prior_ham,prior_spam): (0.3333333,0.6666667)
Here, top 5 ham words corresponds to the five largest values in log_probs_ham, and top 5 spam
words corresponds to the five largest values in log_probs_spam.
7
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Part C (15 marks)
Create a folder containing the data for a Python package called spamfilter with the code from
Parts A and B, and exposes the functions in Part A and the class in Part B to the user. Make sure
that running python -m pytest and python -m build from within the folder spamfilter in the
command line does not produce any errors or failures. The result of python -m build should be the
file spamfilter-0.0.1.tar.gz and/or spamfilter-0.0.1*******.whl in the folder spamfilter/dist,
if you have chosen version number 0.0.1 (and ******* are optional other characters).
Part D (25 marks)
Make sure that the functions and class from Parts A and B are available. Create a script file
filter.py with code as described below.
D(i)
Load the file train.csv and create with this an object from the NaiveBayes class. Fit the object
with α = 1 and print it to the console.
D(ii)
Load also the file test.csv and classify the messages in both train.csv and test.csv using the
classifier from Part D(i). Print the confusion tables (comparing true classifications to actual ones)
for both cases, and print the accuracy (diagonal of confusion matrix divided by total number of
messages in the respective set of messages) to the console. Comment briefly on the difference
between the accuracies for both cases.
D(iii)
Continuing on from D(ii) consider α now a tuning parameter. Fit NaiveBayes messages in train.csv
for 10 evenly spaced values of α in the interval [0,1]. Determine the best such α in terms of achieving
the highest accuracy when testing on the messages in test.csv.
Discuss briefly if choosing the tuning parameter α in this way is reasonable.
8
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写tutorial 5 structured qu...
2025-02-21
代写homework 6: measuring bi...
2025-02-21
代做problem set 1代写process...
2025-02-21
代写f24 adms 3541 case study...
2025-02-21
代写lang7402 introduction to...
2025-02-21
代写english language and stu...
2025-02-21
代写programming assignment 1...
2025-02-21
代做economics 496: undergrad...
2025-02-21
代做6com2005 practical assig...
2025-02-21
代做acct608 – financial acc...
2025-02-21
代做java lab 1帮做java编程
2025-02-21
代写mktg5001 task 1a project...
2025-02-21
代写cs 230 winter 2024 tutor...
2025-02-21
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!