首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写data编程、代做Python程序语言
项目预算:
开发周期:
发布时间:
要求地区:
Lab 2: Neural Networks for Image
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 32x32 color images categorized into 10
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10
dataset. However, certain parts of the task will be individualized based on your QMUL
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset,
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = 32 + last_digit_of_id # Batch size is 32 +
last digit of your QMUL ID
train_loader = DataLoader(train_dataset,
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset,
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID *
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID)
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
torch.nn.Flatten(),
torch.nn.Linear(32*32*3, 512),
torch.nn.ReLU(),
torch.nn.Linear(512, 10) # 10 output classes for
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(),
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set.
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish.
You may see a lower accuracy, especially for the validation accuracy, due to the lower
number of epochs or the used simple neural network model, etc. If you are interested,
you can find more advanced open-sourced codes to test and improve the performance.
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = []
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_accuracy = 100 * correct / total
print(f"Epoch {epoch+1}/{num_epochs}, Loss:
{running_loss:.4f}, Training Accuracy:
{train_accuracy:.2f}%")
# Validation step
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_accuracy = 100 * correct / total
print(f"Validation Accuracy after Epoch {epoch + 1}:
{val_accuracy:.2f}%")
train_losses.append(running_loss)
train_accuracies.append(train_accuracy)
val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses,
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies,
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies,
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID,
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input
layer, hidden layer, and output layer, activation function) and training
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting
issue.
(2) What is the role of loss function? List TWO representative loss functions.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!