首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写program、代做MATLAB语言程序
项目预算:
开发周期:
发布时间:
要求地区:
Introduction
Exercise 5: Field data acquisition and analysis Rahul
October 7, 2024
In this assignment you will be using your knowledge on safety measures and signal processing to analyze real-world data collected in the field. The aim of this assignment is to investigate how vulnerable road users (VRUs) interact. This assignment consists of two parts. In the first part, you will be collecting data with the LIDAR. In the second part you will analyze the data you collected to model VRUs interactions. In this assignment you will be using MATLAB.
Note: You are encouraged to discuss your solutions with others but you must write and submit your own code implementation and answers.
Deadline: October 21, 2024 (23:59) Learning objectives
After having performed this assignment, you shall be able to:
• Collect real-world data in real world from a LIDAR based system
• Process and filter LIDAR data
• Calculate safety indicators to create a simple model for the interaction between VRUs • Select parameters to design a collision warning system
Preparations
1. Download the material from Canvas. Exercise.m is the template script to solve the second part of the assignment. The script contains some guidelines to complete the exercise. The file playLidar.m is the toolkit to visualize the collected data. The file bag2csv.m contains a function to convert the
TME192 - Active safety Page 1
file that contains the LIDAR measurement (.bag) into a comma separated values (.csv) file that only contains LIDAR data. The file importLidarData.m contains a function to import the .csv data into MATLAB.
2. You have the choice to collect your own data on campus (see info on Canvas), or to work with the data from a previous year (2018-10-24-11-11-25_0.bag).
3. We are using the Robot Operating System (ROS) to record the LIDAR data with our data logging platform1. To be able to read the recorded data in MATLAB, you need to have the ROS Toolbox2 installed.
Tasks
Part A - Data collection
Instructions to collect the data will be given in class. The instructions will include the description of the LIDAR-based platform and how to operate it. You will be outside with the teaching assistants to collect LIDAR data using a handheld LIDAR device. By holding the LIDAR in front of you and approaching pedestrians (this will later on be referred to as the ‘event of interest’), you will record data which will be used in the second part to analyze pedestrian interaction.
Note: Due to the pandemic, this part is voluntary in this year’s round of the course. If you do not wish to collect your own data, you can proceed to Part B with the data from the previous round (2018-10-24-11-11-25_0.bag).
Part B - Data analysis
1. The Lidar has a field of view of about 190 degrees and a range of about 120 meters. At each timestamp, the Lidar scans the environment and collect 1521 measurements equally spaced between
-95 deg and +95 deg. Figure 1 below shows the reference system for interpreting the data.
Figure 1: LIDAR reference system 1 https://github.com/ruvigroup/div_datalogger
2 https://se.mathworks.com/products/ros.html
TME192 - Active safety Page 2
2. The LIDAR saves the data in the ROS .bag format. Save this file into the folder of the exercise. The .bag file needs to be converted into a .csv file via the function bag2csv which extracts only the LIDAR data from the bag file. That reduces file size, in case you have video data in your collected data (which is not the case for the given example recording). The function takes as input the relative path of the .bag file to be converted, e.g. bag2csv('2018-10-24-11-11-25_0.bag') . When you run bag2csv, a new .csv file will be saved in the same location of the .bag file. This .csv file is the one you should submit in the end.
3. With the function playLidar, you can visualize the ROS .bag file you recorded (both LIDAR and video data). When you run the script without any input, a dialog box appears. Select the .bag file that contains the measurements. Otherwise, you can run the function specifying the .bag file to be loaded as a input to the function, e.g. playLidar('2018-10-24-11-11-25_0.bag') . The interface shows both the timestamp in seconds and the frame number. Working with frame numbers makes it easier to analyze the data in MATLAB (the frame number corresponds to the row number in the .bag file). Scroll through the frames (you can also use the arrow keys, left/right = +/- 1 frame, up/down = +/- 10 frames) and identify the frames that contain relevant events (in particular, the start and the end frame for each event). You may also want to limit the field of view. A narrow field of view may help to differentiate among targets.
4. Once you have identified the events of interest and you found the optimal field of view settings, you can start coding in the main script Exercise.m. Before anything, set the filename of the .csv you will be using for your analysis. The script will import the .csv file into a MATLAB structure data.
5. To get acquainted with processing LIDAR data, plot the LIDAR measurement at a single timestamp. Plot the measurements in the whole field of view of the LIDAR, highlight the data within the chosen (bounded) field of view, and mark the closest point in the field of view (which is a reasonable approximation of the obstacles). The LIDAR data are collected as polar coordinates. Thus, the data need to be transformed to be able to plot a graph in Cartesian coordinates (try the MATLAB function pol2cart). Try to replicate Figure 2:
TME192 - Active safety Page 3
Figure 2: LIDAR visualization via the playLidar function.
6. In a single figure, plot the distance measurements for all the events of interest. You should obtain something like Figure 3. Data can be noisy. If so, apply a filter to the data to reduce the noise and remove artifacts. Try, for example, the MATLAB function smooth.
Figure 3: Distance over time, obtained from all events of interest.
7. In a single figure, plot the relative speed (range rate) with the obstacles for all the events of interest. You should obtain something like Figure 4. Data can be noisy. If so, apply a filter to the data to reduce the noise and remove artifacts.
Figure 4: Relative speed over time, obtained from all events of interest.
TME192 - Active safety Page 4
8. In a single figure, plot time to collision (TTC) with the obstacles for all the events of interest. You should obtain something like Figure 5. Data can be noisy. If so, apply a filter to the data to reduce the noise and remove artifacts.
Figure 5: Time-to-collision (TTC) over time, obtained from all events of interest.
9. Finally, answer the question: What safety measure would you use to design a warning that alert the user that is about to collide with an obstacle? You may want to use one of the safety measures you computed in the script of find a more accurate one. What value of such measure would you use to trigger a warning? Write your answer in the MATLAB script and enclose it in a comment.
Submission
Submit your solutions in the assignment in Canvas. Submit the Exercise.m script together with your recorded .csv file (only if you recorded your own data). If the file is too large, upload it e.g. using Chalmers box (https://chalmersuniversity.app.box.com/), and submit the link to the file in a comment. It is sufficient if at least one group member submits your solution in Canvas. See deadline above.
TME192 - Active safety Page 5
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写data driven business mod...
2024-11-12
代做acct1101mno introduction...
2024-11-12
代做can207 continuous and di...
2024-11-12
代做dsci 510: principles of ...
2024-11-12
代写25705 financial modellin...
2024-11-12
代做ccc8013 the process of s...
2024-11-12
代做intro to image understan...
2024-11-12
代写eco380: markets, competi...
2024-11-12
代写ems726u/p - engineering ...
2024-11-12
代写cive5975/cw1/2024 founda...
2024-11-12
代做csci235 – database syst...
2024-11-12
代做ban 5013 analytics softw...
2024-11-12
代写cs 17700 — lab 06 fall ...
2024-11-12
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!