首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
AERO20542代做、代写Python/Java编程
项目预算:
开发周期:
发布时间:
要求地区:
MECH20042/AERO20542 Numerical Methods and Computing
Laboratory exercise 1: Direct methods for the solution of
tridiagonal systems of linear equations
Solution of systems of linear equations is one of the most frequently encountered problems in
numerical modelling and simulation. Efficient numerical methods, both in terms of the execution time
and memory storage are essential to complete this task. Sparse systems of linear equations arise in
many applications, such as finite element or finite volume solution of differential equations. Sparse
linear systems have coefficient matrices that are sparse, i.e., a large proportion of the elements are
equal to zero. Banded matrices are a special class of sparse matrices in which the non-zero coefficients
are concentrated about the main diagonal.
Storing sparse matrices in computer memory as two-dimensional arrays is inefficient, as many zero
elements are kept needlessly in computer memory. Banded matrices can be stored by their diagonals,
where each diagonal is stored as a one-dimensional array (a vector). With this setup a tridiagonal
matrix 𝑇 of size 𝑛 × 𝑛
can be stored using three vectors as follows:
𝐴 = [𝑎11 𝑎22 ⋯ 𝑎𝑛𝑛]
𝑇 ∈ 𝑅
𝑛
,
𝐵 = [𝑎21 𝑎32 ⋯ 𝑎𝑛,𝑛−1]
𝑇 ∈ 𝑅
𝑛−1
,
𝐶 = [𝑎12 𝑎23 ⋯ 𝑎𝑛−1,𝑛]
𝑇 ∈ 𝑅
𝑛−1
.
The Gaussian elimination technique applied to a tridiagonal system 𝑇𝒙 = 𝒇 is particularly simple,
because only the non-zero elements in the sub-diagonal held in vector 𝐵 need to be eliminated. This
algorithm, known as the Thomas algorithm, proceeds as follows:
FORWARD ELIMINATION BACKSUBSTITUTION
𝑎𝑖𝑖 = 𝑎𝑖𝑖 −
𝑎𝑖,𝑖−1
𝑎𝑖−1,𝑖−1
𝑎𝑖−1,𝑖 𝑥𝑛 =
𝑓𝑛
𝑎𝑛𝑛
𝑓𝑖 = 𝑓𝑖 −
𝑎𝑖,𝑖−1
𝑎𝑖−1,𝑖−1
𝑓𝑖−1 𝑥𝑖 =
1
𝑎𝑖𝑖
(𝑓𝑖 − 𝑎𝑖,𝑖+1 𝑥𝑖+1)
𝑖 = 2, … , 𝑛 𝑖 = 𝑛 − 1, … ,1
TASK 1. Calculate the number of arithmetic operations that are required to solve a tridiagonal system
𝑇𝒙 = 𝒇 of size 𝑛 using the Thomas algorithm. Based on this result, determine the asymptotic
complexity of the Thomas algorithm, and compare it to the asymptotic complexity of the standard
Gaussian elimination.
TASK 2. Rewrite the Thomas algorithm in terms of the arrays 𝐴,𝐵, and 𝐶 introduced to store the matrix
𝑇 efficiently.
TASK 3. Implement the Thomas algorithm from TASK 2 as a Python function. The input parameters to
the function should be the coefficient matrix 𝑇 (stored as three arrays 𝐴,𝐵, and 𝐶) and the right-hand
side vector 𝒇. The output should be the solution vector 𝒙. The coefficient matrix and the right-hand
side should be defined in the main script and passed to the function that solves the system.
TASK 4. Test your code by solving the linear system of size 𝑛 = 10 with the values 𝐴 = 2, and 𝐵 = 𝐶 =
−1. Set the right-hand side to 𝒇 = 𝟏. To verify the correctness of your code, compare the solution
vector obtained from the Thomas algorithm to that obtained by applying the direct solver
numpy.linalg.solve(). For the latter, the coefficient matrix should be assembled.
TASK 5. Solve five linear systems 𝑇𝒙 = 𝒇 with 𝐴 = 2, 𝐵 = 𝐶 = −1 and 𝒇 = 𝟏 varying the problem size
𝑛 between 106
and 108
. Record the execution times in seconds for each case. To accomplish this task,
explore the Python function timer() from the package timeit (refer to the code for matrix
multiplication covered in lectures). Plot a graph where the obtained execution times are represented
as the function of the problem size 𝑛. What are your conclusions about the cost of the Thomas
algorithm?
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!