首页 > > 详细

代做MATH375 (Mock) Class Test帮做R编程

项目预算:   开发周期:  发布时间:   要求地区:

MATH375 (Mock) Class Test

Time-length: 60 minutes. Worth 30% of the total mark.

1. (a) Give the definition of a probability measure. [4 marks]

(b) Let (Ω, F, P) be a probability space and X a random variable defined on it. If X(ω) = c for all ω ∈ Ω, i.e. X is a constant random variable, then prove that the σ-algebra generated by X is the trivial σ-algebra. [6 marks]

2. (a) Let (Ω, F) = ([0, 1], B[0, 1]). Define the probability measure P on this space as:

for some n > 0. Let the random variable X on this space be defined as X(ω) := 1 − ω for all ω ∈ Ω. Find the distribution measure µX[a, b], where 0 ≤ a < b ≤ 1. [5 marks]

(b) Let (W(t), t ≥ 0) be a standard Brownian motion. Compute:

[5 marks]

3. Let r, σ, T, S0, K, M, N, be given positive numbers, W(T) ∼ N(0, T), and consider the random variable:

Calculate the following expectation:

[10 marks]



软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!