首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
java编程设计调试、讲解program留学生编程、Java程序语言辅导 辅导留学生 Statistics统计、回归、迭代|讲解留学生Processing
项目预算:
开发周期:
发布时间:
要求地区:
GA Phase 2
Dear Students,
Below are the requirements for phase 2 of the project. As mentioned, this phase is about random solution generation. For this phase 2 (Random) and phase 3 (GA) to come, you are to use the same set of 3 inputs (small, medium, large sized) that you used in Phase 1 (brute force). You will be testing two random number generators:
a)Math.random() gives a random double from 0.0 (inclusive) to 1.0 (exclusive). See https://mkyong.com/java/java-generate-random-integers-in-a-range/
b) to generalize to numbers in a range other than 0..1
b) a generator based on the Blum-Blum-Shub (BBS) method. See https://www.commonlounge.com/discussion/481152258acb4003a5903d2fc1bc425f for a detailed description of the BBS method.
I will summarize the BBS algorithm now. This second generator has 3 parameters P, Q and X0. X0 is the "seed", the first number of the sequence as an input to get other numbers in the sequence (ie X0 is not used by your code; it's only purpose is to start things off.) For example, Let X0 = 127.
Set N = P*Q. As an example let P = 67 and Q = 79 so that N = 67 × 79 = 5293. Then, the sequence will be generated iteratively by the following "iterative" formula:
Xi+1 = (Xi)^2 % N where ^ is raised to the power and % is the mod function. NOTE: that the Xi are only integers in the iterative generation of the sequence; HOWEVER, when using them, we are going to use it slightly differently since we are generating numbers between 0 and 1. You will take the integer generated and put a decimal point on the left. So, if Xi+1 = 250, then your code will output 0.250; if Xi+1 = 4277, then your code will output 0.4277 and finally, if Xi+1 = 121, then your code will output 0.121 (Note: The above is a slightly simplified version of BBS.)
IMPORTANT REMINDER: for the purposes of generating the sequence, you only use the integers as is, but the way you will utilize these numbers is to generate a number between 0 and 1 where the decimal points are the digits of the integer as explained above. The numbers of the sequence generated discussed above (250, 4277, 121) would actually be generated if X0 = 127. Namely, 127^2 (mod 5293) is 250; 250^2 (mod 5293) is 4277; and, 4277^2 (mod 5293) is 121. Thus, the sequence generated will be 250; 4277; 121; however, you will interpret these numbers as 0.250; 0.4277; 0.121 in order to accommodate a real number between 0 and 1.
Now, for each of the sets of input data you have from phase 1, you should generate at least 10000 random "solutions" to your problem, with a population of at least 1000 and ran for a minimum of 10 generations. You will need to define a fitness function for your problem whose maximum value would be from a brute-force solution and then keep track of the maximum fitness (and the solution that obtained it) and identify the minimum and average fitnesses for the all the guesses (random solutions) you generated. You will need to do this for both Math.random() based generator and BBS based generators separately (10000 guessed solutions for each) and for each of the input data sets, output the best random solution obtained by Math.random(), the best random solution obtained by BBS and their fitnesses. Please also include a brute force solution from phase 1 for each of these input data sets and compute the fitness of those as well. Sincerely, Professor
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写math 1151, autumn 2024 w...
2024-11-14
代做comp4336/9336 mobile dat...
2024-11-14
代做eesa01 lab 2: weather an...
2024-11-14
代写comp1521 - 24t3 assignme...
2024-11-14
代写nbs8020 - dissertation s...
2024-11-14
代做fin b377f technical anal...
2024-11-14
代做ceic6714 mini design pro...
2024-11-14
代做introduction to computer...
2024-11-14
代做cs 353, fall 2024 introd...
2024-11-14
代做phy254 problem set #3 fa...
2024-11-14
代写n1569 financial risk man...
2024-11-14
代写csci-ua.0202 lab 3: enco...
2024-11-14
代写econ2226: chinese econom...
2024-11-14
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!