首页 > > 详细

代做COMP1600 6260 Foundations of Computing: Week 6帮做R程序

项目预算:   开发周期:  发布时间:   要求地区:

COMP1600 6260

Foundations of Computing: Week 6

S2 2025

Practical Session 6

• This tutorial will give you further practice at structural induction on lists, using Dafny.

• Use the Dafny file 06-tutorial-handout.dfy for the Dafny and mini-assignment questions.

• Upload a plain text file called u123456.dfy (replace by your uID) to Wattle, you might lose (some) marks otherwise.

• Submit the exercises marked MA by Wednesday 17th September, 2025, 09:00 via Wattle. Late submissions will score 0.

We are now using lists over a generic type T defined by the following:

datatype List<T> = Nil | Cons(head: T, tail: List<T>)

Exercise 1                               List Induction

Consider the function Filter, which takes a list of arbitrary type T and a function from T to booleans, and returns the list containing only the elements which satisfied the given function. Also recall the functions Sum and DoubleAll, shown in the lectures:

function Filter<T>(p: T -> bool, xs: List<T>):List<T>{

match xs

case Nil => Nil

case Cons(x,tail) => if p(x) then Cons(x,Filter(p,tail))

else Filter(p,tail)

}

function Sum(xs: List<nat>):nat {

match xs

case Nil => 0

case Cons(x,tail) => x + Sum(tail)

}

function DoubleAll(xs: List<nat>):List<nat>{

match xs

case Nil => Nil

case Cons(x,tail) => Cons((2*x),DoubleAll(tail))

}

Your task is to prove the following lemma:

Sum(DoubleAll(Filter(p,xs))) == 2 * Sum(Filter(p,xs))

(a) Prove the lemma on paper without using Dafny. Ensure to justify every step of your proof.

(b) Prove the lemma using Dafny.

Exercise 2                                Summation

Consider the following function sum2 from class together with a function that increments every list element by one.

function sum2 (list: List<int>, a: int) : int {

match list {

case Nil => a

case Cons(h, t) => sum2(t, a + h)

}

}

function inc_list (list: List<int>): List<int> {

match list {

case Nil => Nil

case Cons(h, t) => Cons(h+1, inc_list(t))

}

}

We wish to show that sum2(inc list(list), 0) == len(list) + sum2(list, 0) for all lists list of integers, where len is the length function

function len (list: List<int>) : int {

match list { case Nil => 0 case Cons(h, t) => 1 + len(t) }

}

given above.

(a) Prove the lemma sum2 add by completing the following code snippet.

lemma sum2_add (list: List<int>, a: int, b: int)

ensures sum2(list, a+ b) == sum2(list, a) + b

{ /* your code here */ }

(b) Prove the lemma sum2 inc aux by completing the code snippet below.

lemma sum2_inc_aux (list: List<int>, a: int)

ensures sum2(inc_list(list), a) == len(list) + sum2(list, a)

{ /* your code here */ }

You might want to use the lemma from the previous part.

(c) Use the lemma just proved to establish our goal by completing the code below.

lemma sum2_inc (list: List<int>)

ensures sum2(inc_list(list), 0) == len(list) + sum2(list, 0)

{ /* your code here */ }

Exercise 3                                   List Reversal      (MA, 2 + 2 + 3 + 3 credits)

Consider the functions Append, rev1 and rev2 below, where Append joins two lists together, and rev1 and rev2 are two different formulations of list reversal.

function Append<T>(xs:List<T>, ys:List<T>): List<T>{

match xs

case Nil => ys

case Cons(x,tail) => Cons(x,Append(tail,ys))

}

function rev1 (list: List<int>) : List<int> {

match list { case Nil => Nil

case Cons(h, t) => Append (rev1(t), Cons(h, Nil)) }

}

function rev2 (list: List<int>, a: List<int>) : List<int> {

match list { case Nil => a

case Cons(h, t) => rev2 (t, Cons(h, a)) }

}

Our goal is to prove that rev1(list) == rev2(list, Nil) for all integer lists list.

(a) Formulate a lemma Append assoc that expresses that append is associative. Dafny should prove this lemma automatically.

(b) Formulate a lemma Append nil that expresses that concatenation with an empty list on the right is the identity. Again, Dafny should prove this automatically.

(c) Formulate and prove a lemma rev1 rev2 aux that generalises the statement rev1(list) == rev2(list, Nil).

(d) Use the lemma above to give a proof of lemma rev1 rev2(list: List<int>) which states that rev1(list) == rev2(list, Nil).





软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!