首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写COMP2012J Operating Systems 程序调度
项目预算:
开发周期:
发布时间:
要求地区:
Operating Systems
Assignment 01: Scheduling
COMP2012J
2025-26
1 Scheduling Simulator
Please download the scheduling simulator skeleton code from the moodle. The scheduling simulator illustrates
the behaviour of scheduling algorithms against a simulated mix of process loads. The user can specify the number
of processes, the mean and standard deviation for compute time and I/O blocking time for each process, and
the duration of the simulation. At the end of the simulation, a statistical summary is presented.
We have given the implementation of FIFO scheduling as an example of how to implement a scheduling algorithm
in the given environment. You are allowed to use any development environment you prefer. Please go through
the instructions carefully and complete the assignment.
2 Running the Simulator
• Compile the java code using the following command.
1 $ javac *. java
• The program reads a configuration file (scheduling.conf) and writes two output files (Summary-Results
and Summary-Processes).
• To run the program, enter the following in the command line.
1 $ java Scheduling scheduling . conf
• The program will display “Working...” while the simulation is working, and “Completed.” when the
simulation is complete.
• The simulator reads parameters from the configuration file (“scheduling.conf”).
2.1 The configuration file
• The configuration file (scheduling.conf) is used to specify various parameters for the simulation.
• There are a number of options which can be specified in the configuration file. These are summarized in
the table below.
Keyword Values Description
numprocess n The number of processes to create for the simulation.
meandev n The average length of time in milliseconds that a process should execute before terminating.
standdev n
The number of standard deviations from the average length of time a process should
execute before terminating.
process n
The amount of time in milliseconds that the process should execute before blocking for input
or output. There should be a separate process directive for each process specified by the
numprocess directive.
runtime n The maximum amount of time the simulation should run in milliseconds.
timeslice n The amount of time for a timeslice in the round-robin implementation.
test 1 or 0 If testing == 1, system use meandev as each process’s length. This is for testing purposes.
3 FIFO Scheduling
• Open the ‘SchedulingAlgorithm.java’ file. You can find the implementation of the FIFO scheduling algorithm here.
• Please go through the FIFO method carefully and try to understand how this version of FIFO algorithm
works. Specifically, give attention to the timer-counter usage in the implementation.
University College Dublin 1
Operating Systems
Assignment 01: Scheduling
COMP2012J
2025-26
• Try to identify the design decisions taken when implementing this algorithm. I.e: assumptions, scope and
limitations.
• Change values in the configuration file and try different types of workloads. Set ‘test’ to ‘0’ when you are
experimenting.
4 Round-robin Scheduling
• Implement the round-robin scheduling algorithm in the ‘SchedulingAlgorithm.java’ file. Use the given
‘.test’ output files as references.
• Assume that the time each process stays in the blocked state is 0.
• Use the print functions in the ‘SchedulingAlgorithm.java’ file to update the ‘Summary-Processes’ file.
5 Testing
• After implementation, execute the ‘run test.py’ to check the accuracy of your algorithm. Please note that
this script is given for your convenience. It is not mandatory to use this. It is written in python and
requires a working installation of python3 to run.
• It compares your output file with a preprocessed output file, which is generated with a round-robin
scheduling algorithm.
• You can add more of your own tests if you prefer. Please add those new tests to ‘tests.txt’ file.
6 Submission
• Submit the ‘SchedulingAlgorithm.java’ file to the submission link in the moodle before the deadline.
• You will be marked against a set of test cases.
• Please keep the code clean and add comments. There will be marks for the code quality and comments.
7 Assessment
Your submission will be tested against input that we have designed. To help you get started, a file called
run test.py has been supplied. Keep the following points in mind:
• run test.py is only a sample. The actual test will contain more tests.
• Do NOT change the input/output format of the code given to you. Any change will result in your code
failing the tests.
• Do NOT output anything other than what has been asked for. If you have added any outputs for your
own convenience, you should remove/comment them before submission.
University College Dublin 2
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做math 2b: sample midterm ...
2025-11-20
代写math 2b midterm 2 infoma...
2025-11-20
代做lin101 memes and course ...
2025-11-20
代写sust 202 midterm exam i代...
2025-11-20
代写choose your own adventur...
2025-11-20
代做ematm0051 large scale da...
2025-11-20
代写6ccyb020 medical imaging...
2025-11-20
代写geg6155 essay advice调试...
2025-11-20
代做comm2244 future of work ...
2025-11-20
代写econ30007 applied econom...
2025-11-20
代写sust 202 – global susta...
2025-11-20
代写econ 102 a02: introducti...
2025-11-20
代做sebe benv0141 ‘energy s...
2025-11-20
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!