首页 > > 详细

代写CMPSC 360 Fall 2025 Homework 7代做Processing

项目预算:   开发周期:  发布时间:   要求地区:

CMPSC 360 Fall 2025

Homework 7

Question 1

Let f : R → R, g : R → R, and h : R — {—2} → R be defined as:

(a)  Compute (h g f)(∞) and simplify.

(b)  Find the domain of h g f.

(c)  Find all real values of ∞ such that (h g f)(x) = 10/1.

Question 2

Prove that the function f : R — {—3} → R — {2} defined by is bijective. Then find its inverse function and verify that the domain of is R — {2}.

Question 3

Let the function f be defined by

(a)  Determine the domain and range of f.

(b)  Find the inverse function (x).

(c) Verify that f and f—1 are inverses of each other by showing that

Question 4

Suppose that represents the identity function on R, defined by (x) = x.

Given the functions:

find all real values of that satisfy

Question 5

Let h : → be defined by h(x) = 2x and let i : → be defined by i(x) = x. Determine the composition i 。h and find out if it is a bijection over the set of positive real numbers .

Question 6

Find a closed-form and recursive expression for the given sequences in part (a), (b) and (c). For part (d), mention yes/no if it is a sequence or not and write only a closed-form. expression if it is a sequence:

(a)  3, −4, −11, −18, …

(b)

(c) A sequence where each term is 7 less than the previous term, starting with the initial term −5.

(d)  2, −0.5, 2, −0.5, 2, …

Question 7

Use Σ notation and/or II notation to rewrite the following:

(a)  1 — 5 + 25 — 125 + … + ∞

(b)  (2n — 1)(2n + 1)(2n + 3)(2n + 5) … (2n + 47)

(c)  



软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!