首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做program、代写Python编程设计
项目预算:
开发周期:
发布时间:
要求地区:
Project: Particle Filter-Based Robot Localization
November 12, 2023
Abstract
Based on the information from the ”Particle Filter” slides, here is a project idea for students
involving the implementation of a Particle Filter for localization and navigation using Python. The
project is designed to be straightforward enough for students with some programming experience,
yet challenging enough to provide a comprehensive understanding of Particle Filters in a practical
scenario.
1 Project Description
In this project, students will implement a Particle Filter to estimate the position of a robot moving in
a two-dimensional space. The robot’s environment will be represented as a grid, where each cell can
be either an obstacle or free space. The robot will have access to a simple sensor that provides noisy
measurements of its distance to the nearest obstacle in its front, left, right, and back directions.
1.1 Objectives
• Implement a Particle Filter: Students will develop a Particle Filter to estimate the robot’s
location based on sensor readings and a map of the environment.
• Simulate Robot Movement: Create a simulation where the robot moves a certain number of
steps in the environment, making random turns and moves.
• Sensor Data Simulation: Generate simulated sensor data based on the robot’s actual position
and the map.
• Visualization: Implement real-time visualization of the particle cloud and the estimated position
of the robot in comparison to its actual position.
1.2 Implementation Approaches
Basic Python Implementation: - Use standard Python libraries (‘numpy‘, ‘matplotlib‘ for visualization).
- Represent the map as a 2D array, the robot’s position as coordinates, and particles as
objects with position and weight attributes. - Implement particle resampling, motion update, and
measurement update functions.
Object-Oriented Approach: - Deffne classes for the Robot, Particle, and Map. - Implement
methods for movement, sensing, and updating in each class. - Use inheritance to showcase different
types of particles or robots, if desired.
Advanced Visualization with Pygame: - Utilize the ‘pygame‘ library for more interactive
and sophisticated visualization. - Allow real-time interaction, e.g., manually controlling the robot’s
movement or altering the environment.
2 Example Template
Import Necessary Libraries
1 import numpy as np
2 import matplotlib . pyplot as plt
3 from matplotlib . animation import FuncAnimation
1Deffne the Robot and Particle Classes
1 class Robot :
2 def __init__ (self , x, y, orientation ):
3 self .x = x
4 self .y = y
5 self . orientation = orientation # in degrees
6
7 def move (self , delta_x , delta_y , delta_orientation ):
8 self .x += delta_x
9 self .y += delta_y
10 self . orientation = ( self . orientation + delta_orientation ) % 360
11
12 # Simulate sensor reading based on robot ’s position
13 def sense (self , environment_map ):
14 # Implement sensor reading logic here
15 pass
16
17 class Particle :
18 def __init__ (self , x, y, orientation , weight ):
19 self .x = x
20 self .y = y
21 self . orientation = orientation
22 self . weight = weight
23
24 def move (self , delta_x , delta_y , delta_orientation ):
25 # Add noise to movement
26 self .x += delta_x + np. random . normal (0, 0.1)
27 self .y += delta_y + np. random . normal (0, 0.1)
28 self . orientation = ( self . orientation + delta_orientation ) % 360 + np. random .
normal (0, 5)
29
30 # Update weight based on measurement
31 def update_weight (self , measurement , robot_measurement ):
32 # Implement weight updating logic here
33 pass
Initialize Robot and Particles
1 robot = Robot (50 , 50, 0)
2 particles = [ Particle (np. random . randint (100) , np. random . randint (100) , np. random .
randint (360) , 1.0) for _ in range (1000) ]
Particle Filter Algorithm
1 def particle_filter ( particles , robot , environment_map , move_command ):
2 # Move the robot and particles
3 robot . move (* move_command )
4 for particle in particles :
5 particle . move (* move_command )
6
7 # Update particles ’ weights based on sensor reading
8 robot_measurement = robot . sense ( environment_map )
9 for particle in particles :
10 particle_measurement = particle . sense ( environment_map ) # Particle ’s sense
method not shown
11 particle . update_weight ( particle_measurement , robot_measurement )
12
13 # Resampling
14 weights = np. array ([ particle . weight for particle in particles ])
15 weights /= np.sum( weights ) # Normalize weights
16 indices = np. random . choice ( range (len( particles )), size =len( particles ), p= weights )
17 resampled_particles = [ particles [i] for i in indices ]
18
19 return resampled_particles
Visualization using Matplotlib
1 def update ( frame_number ):
2 global particles , robot
3 move_command = (1, 0, 10) # Example move command
4 particles = particle_filter ( particles , robot , environment_map , move_command )
5
26 # Clear current plot
7 plt . cla ()
8
9 # Plot particles
10 xs , ys = zip (*[( particle .x, particle .y) for particle in particles ])
11 plt . scatter (xs , ys , color =’blue ’, s=1)
12
13 # Plot robot
14 plt . scatter ( robot .x, robot .y, color =’red ’, s =10)
15
16 plt . xlim (0, 100)
17 plt . ylim (0, 100)
18 plt . title (" Particle Filter Robot Localization ")
19
20 fig = plt . figure ()
21 ani = FuncAnimation (fig , update , frames =10 , interval =1000)
22 plt . show ()
Note:
• This code provides a basic framework and requires further development to fully simulate the
environment, sensor readings, and particle weight updates.
• The move and sense methods for the Robot and Particle classes should be tailored to the speciffc
problem and sensor model.
• The visualization updates the particles and robot position at each step, illustrating the working
of the particle fflter.
This implementation serves as a foundational guideline, and students are encouraged to build upon it,
reffning and adding complexity as needed for their speciffc project requirements.
3 Expected Outcomes
• - Understand the concept and application of Particle Filters in localization.
• - Gain experience in simulating robot movement and sensor readings.
• - Develop skills in probabilistic reasoning and algorithm implementation.
4 Evaluation Criteria
• - Accuracy of the localization (how close the estimated position is to the actual position).
• - Efffciency of the implementation (number of particles used vs. accuracy).
• - Quality of the visualization and ease of understanding the Particle Filter process.
This project provides a balance of theoretical understanding and practical application, making it
an excellent exercise for students to grasp the fundamentals of Particle Filters in robotics.
3
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!