首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
CP1407代做、代写c/c++,Java程序
项目预算:
开发周期:
发布时间:
要求地区:
CP1407 Assignment 2
- Page 1 -
Note: This is an individual assignment. While it is expected that students will
discuss their ideas with one another, students need to be aware of their
responsibilities in ensuring that they do not deliberately or inadvertently
plagiarise the work of others.
Assignment 2 – Practice on various Machine Learning algorithms
1. [Data Pre-Processing, Clustering] [10 marks]
Why is attribute scaling of data important? The following table contains sample
records having the number of numbers and the total revenue generated by particular
stores of a supermarket. Use the table as an example to discuss the necessity of
normalisation in any proximity measurement for clustering purposes.
Supermarket ID Employee Count Revenue
001 38 $5,500,000
002 29 $5,000,000
003 24 $5,000,000
004 10 $890,000
005 40 $2,500,000
006 31 $3,200,000
007 14 $678,000
008 35 $5,200,000
009 30 $5,300,000
010 22 $5,500,000
2. [Classification – Decision Tree algorithm] [20 marks]
Use the soybean dataset (diabetes.arff) to perform decision tree induction in Weka
using three different decision tree induction algorithms; J48, REPTree, and
RandomTree. Investigate different options, particularly looking at differences between
pruned trees and unpruned trees. In discussing your results, consider the following
questions.
a) What are the effects of pruning on the results for the soybean datasets?
b) Are there differences in the performances of the three decision tree algorithms?
c) What impacts do other parameters of the algorithms have on the results?
3. [Classification – Naïve Bayes algorithm] [30 marks]
Suppose we have data on a few individuals randomly examined for basic health check.
The following table gives the data on these individuals’ health-related attributes. CP1407 Assignment 2
- Page 2 -
Body
Weight
Body
Height
Blood
Pressure
Blood Sugar
Level
Habit Class
Heavy Tall High 3 Smoker P
Heavy Short High 1 Nonsmoker P
Normal Tall Normal 3 Nonsmoker N
Heavy Tall Normal 2 Smoker N
Low Medium Normal 2 Nonsmoker N
Low Tall Normal 1 Nonsmoker P
Normal Medium High 3 Smoker P
Low Short High 2 Smoker P
Heavy Tall High 2 Nonsmoker P
Low Medium Normal 3 Smoker P
Heavy Medium Normal 3 Smoker N
Use the data together with the Naïve Bayes classifier to perform a new classification for
the following new instance. Create and use the classifier by hand, not with Weka, and
show all your working.
Body
Weight
Body
Height
Blood
Pressure
Blood Sugar
Level
Habit Class
Low Tall High 2 Smoker ?
4. [Association Rules Mining] [20 marks]
The following table film watching histories for several viewers of an on-demand service.
User Id Items
001 Airplane!, Downfall, Evita, Idiocracy, Jurassic Park
002 Casablanca, Downfall, Evita, Flubber, Jurassic Park
003 Airplane!, Downfall, Half Baked, Jurassic Park
004 Airplane!, Downfall
005 Casablanca, Downfall, Flubber, Jurassic Park, Zoolander
006 Casablanca, Downfall, Half Baked, Idiocracy, Zoolander
007 Evita, Idiocracy, Jurassic Park
008 Downfall, Jurassic Park, Zoolander
009 Casablanca, Downfall, Evita, Half Baked, Jurassic Park, Zoolander
a) Follow the steps outlined in Practical 07 and conduct a mining task for Boolean
association rules using the Apriori algorithm in Weka.
b) Set different parameters and observe the association rules discovered.
c) Weka provides association evaluation parameters other than support and
confidence. Note the evaluation results by those evaluation parameters of example
rules.
CP1407 Assignment 2
- Page 3 -
5. [Clustering] [20 marks]
Consider the following 2-dimensional point data set presented in (x,y) coordinates:
P1(1,1), P2(1,3), P3(4,3), P4(5,4), P5(9,4), P6(9, 6).
Apply the hierarchical clustering method by hand (using Agglomerative algorithm) to
get final two clusters. Use the Manhattan distance function to measure the distance
between points and use the single-linkage scheme to do clustering. Show all your
working.
Rubric
Exemplary Good Satisfactory Limited Very Limited
90-100% 70-80% 50-60% 30-40% 0-20%
For each
question
Answer
demonstrates
excellent
knowledge of
machine
learning and
data science,
is well-written,
and very welljustified.
Exhibits
aspects of
exemplary
(left) and
satisfactory
(right)
Answer
demonstrates
sound
knowledge of
machine
learning and
data science
and provides
justification.
Exhibits
aspects of
satisfactory
(left) and very
limited (right)
Answer
demonstrates
flawed
knowledge of
machine
learning
and/or
provides
incoherent
justification.
Or
Answer is
absent or
negligible.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!