首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
CA2编程代写、代做MatLab设计程序
项目预算:
开发周期:
发布时间:
要求地区:
CA2
Submission Instructions:
• CA2 is due on Friday, November 15, 2024, 23:59:59.
• Submit your homework to Canvas folder ‘CA2 submission’ as a single zip file containing,
1. MatLab file(s) of script/functions. Do not include the individual files for figures or
the workspace.
2. A brief PDF report.
• The zip file should be named “STUDENT-NUMBER_NAME.zip”.
• Name the main MatLab script “main”. When run, it should be able to call other scripts
and functions (if any) and generate all the necessary figures and results asked below.
Rules:
• You can use all online resources, including MathWorks, blogs and generative AI tools.
Cite the source in your report if you adopted a part of your work from somewhere.
• You may get a reasonable amount of help from others, but the submitted work must be
wholly your own.
• In your PDF report, only include the responses to the questions and figures asked in the
assignment. These are indicated in bold.
• Feel free to ask for clarifications until November 11, 2023, 23:59:59. No clarification will
be provided after this date. Please check the assignment carefully and ensure you fully
understand it by this date.
Task 1 – Path loss models (5 pts)
In this task, you will simulate the free-space and two-ray path-loss models using MatLab.
You will observe how the received power varies with channel parameters.
Write a MatLab script that plots the ratio of received power to transmit power in dB, against
the logarithm of the distance from the transmitter 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑), for d from 1 meter to 3000
meters.
a) Using the free space path-loss model.
b) Using two-ray model.
Use the following parameters:
fc = 2*10^9; % Carrier frequency in Hz
G = 1; % Antenna gain
R = 0.95; % Reflection coefficient
h = 2.5; % Sum of tx and rx antenna heights in meters. E.g., h1 = 1.1, h2 = 1.4
Increment d in small step sizes at least for small d values, e.g., 0.01 meters. For the two-ray
model, assume transmitter and receiver antennas are at equal heights from the ground
reflector. Hint: you must derive the reflected ray’s propagation distance in terms of d and h.
Overlay both plots onto the same figure with different colors, label the axes, indicate the
units, and label the plots with a legend. Copy the figure to your report.
Explain in your report, how and why the propagation characteristics in both models change
when you vary the carrier frequency and the sum of antenna heights.
Task 2 – Data fitting into path-loss and shadowing model (5 pts)
In this task, you will fit data into the simplified path-loss plus shadowing model.
The table below lists a set of empirical path loss measurements.
Use the least squares method to find the parameters of a simplified path-loss plus
shadowing model that best fits this data. I.e., find the value of the constant K in dB and the
path-loss exponent γ. Assume log-normal shadowing with zero mean, and 𝑑𝑑0 = 1. You may
use any MatLab function/library or write your own code to perform the least squares
optimization. Indicate the values of K and 𝛄𝛄 in your report.
Using the model you found, estimate the path-loss at 2 km from the transmitter. Briefly
show your calculations in your report.
Task 3 – Error correction coding with convolutional codes (10 pts)
We learned in class that error correction codes can detect and correct bit errors that occur
due to noise and interference in wireless channels. In this task, you will implement a
Convolutional code and a Viterbi decoder to improve the bit error rate in a communication
system.
Consider the convolutional code shown below. We will use this code over an Additive
Gaussian Noise Channel (AGNC). Let the input bit sequence be u = (u1, u2, … , un, 0, 0)
where n = 1000 and the last two 0's are for termination.
Let x = (x1, x2, … , x2𝑛𝑛+2) denote the encoded sequence. Suppose x is mapped to a
±1 sequence v by the rule vi = (−1)xi. Thus, vi = 1 if xi = 0, and vi = −1 if xi = 1 and
so on. Suppose v is sent over an AGNC and y = v + z is received, where z = (z1, … , z2𝑛𝑛+2)
is a sequence of independent Gaussian random variables with variance 𝜎𝜎 = N0/2.
Implement a Viterbi decoder for this code and plot the resulting bit error rate (BER) vs
𝐄𝐄𝐛𝐛/𝐍𝐍𝟎𝟎. Vary Eb/N0 from 0 dB to 10 dB in steps of 1 dB. Carry out at least 10,000 trials for
each data point in your plot. (Note that Eb/N0 equals 1/𝜎𝜎2 here.)
Determine by simulation the BER for uncoded transmission (i.e., vi = 1 if ui = 0, and ui =
−1 if ui = 1) and plot it against Eb/N0 for the same range of values. Overlay both plots on
the same graph and add it to your report. (Note that Eb/N0 equals 1/(2𝜎𝜎2) for uncoded
transmission.)
Hint: You can use built-in MatLab functions for Viterbi decoder or any other library if you are
using another programming language. You’ll have to figure out how to determine the values
of generator polynomials if you are using these functions.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!