首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写INFS3208、代做Python语言编程
项目预算:
开发周期:
发布时间:
要求地区:
School of Information Technology and Electrical Engineering
INFS3208 – Cloud Computing
Programming Assignment Task III (10 Marks)
Task description:
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the
UN debates and find the most similar debate contents. The returned result should be the top 10
verbs that are most frequently used in all debates and the debate that is most similar to the one
we provide. This assignment is to test your ability to use transformation and action operations in Spark
RDD programming and your understanding of Vector Database. You will be given three files,
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt)
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS.
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are
some technical requirements in your code submission as follows:
Objectives:
1. Read Source Files from HDFS and Create RDDs (1.5 marks):
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and
convert only the “text” column into an RDD. Details of un-general-debates.csv are
provided in the Preparation section below (1 mark).
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from
HDFS and load them into separate RDDs (0.5 marks).
• Note: If you failed to read files from HDFS, you can still read them from the local file
system in work/nbs/ and complete the following tasks.
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks):
• Remove empty lines (0.5 marks).
• Remove punctuations that could attach to the verbs (0.5 marks).
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the
punctuation.
• Change the capitalization or case of text (0.5 marks).
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you
DO NOT make all of them in lower-case.
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt)
(0.5 mark).
• Convert all verbs in different tenses into the simple present tense by looking up the
verbs in the verb dictionary list (verb_dict.txt) (1 mark).
o E.g., regular verb: “work” - works”, “worked”, and “working”.
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”,
“were”, “being” and “been”.
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300).
3. Use learned RDD Operations to Count Verb Frequency (3 marks):
• Count the top 10 frequently used verbs in UN debates (2 marks).
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a
descending order of the counts (1 marks).
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks):
• Convert the original debates into vectors and store them in a proper Index (1.5 mark).
• Search the debate content that has the most similar idea to “Global climate change is
both a serious threat to our planet and survival.” (1 mark)
Preparation:
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to
understand what the task is and what the technical requirements include. Secondly, you should review
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook.
All technical requirements need to be fully met to achieve full marks. You can either practise on
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please
read the Example of writing Spark code below to have more details.
Assignment Submission:
You need to compress only the Jupyter Notebook (.ipynb) file.
The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”.
You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024
Only one extension application could be approved due to medical conditions.
Main Steps:
Step 1:
Log in your VM instance and change to your home directory. We recommend using a VM instance
with at least 4 vCPUs, 8G memory and 20GB free disk space.
Step 2:
git clone https://github.com/csenw/cca3.git && cd cca3
Run these commands to download the required docker-compose.yml file and configuration files. Step 3:
sudo chmod -R 777 nbs/
docker-compose up -d
Run all the containers using docker-compose
Step 4:
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file.
Step 5:
docker ps
docker exec
hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt
docker exec
hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt
docker exec
hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv
Run the above commands to put the three source files into HDFS. Substitute
with
your namenode container ID. After that, you should see the three files from HDFS web interface at
http://external_IP/explorer.html
Step 6:
The un-general-debates.csv is a dataset that includes the text of each country’s statement from
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over
forty years of data from different countries, which allows for the exploration of differences between
countries and over time [1,2]. It is organized in the following format:
In this assignment, we only consider the “text” column.
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word
is the simple present tense of the verb.
The all_verbs.txt file contains all the verbs.
Step 7:
Create a Jupyter Notebook to complete the programming objectives.
We provide some intermediate output samples below. Please note that these outputs are NOT answers
and may vary from your outputs due to different implementations and different Spark behaviours.
• Intermediate output sample 1, take only verbs:
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses):
• Intermediate output sample 3, most similar debate:
You are free to use your own implementation. However, your result should reasonably reflect the top
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the
sentence “Global climate change is both a serious threat to our planet and survival.”
Reference:
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates.
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017.
Appendix:
Transformations:
Transformation Meaning
map(func) Return a new distributed dataset formed by passing each element of the
source through a function func.
filter(func) Return a new dataset formed by selecting those elements of the source on
which funcreturns true.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output
items (so funcshould return a Seq rather than a single item).
union(otherDataset) Return a new dataset that contains the union of the elements in the source
dataset and the argument.
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source
dataset and the argument.
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source
dataset.
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K,
Iterable
) pairs.
Note: If you are grouping in order to perform an aggregation (such as a
sum or average) over each key, using reduceByKey or aggregateByKey will
yield much better performance.
Note: By default, the level of parallelism in the output depends on the
number of partitions of the parent RDD. You can pass an
optional numPartitions argument to set a different number of tasks.
reduceByKey(func,
[numPartitions])
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs
where the values for each key are aggregated using the given reduce
function func, which must be of type (V,V) => V. Like in groupByKey, the
number of reduce tasks is configurable through an optional second
argument.
sortByKey([ascending],
[numPartitions])
When called on a dataset of (K, V) pairs where K implements Ordered,
returns a dataset of (K, V) pairs sorted by keys in ascending or descending
order, as specified in the boolean ascending argument.
join(otherDataset,
[numPartitions])
When called on datasets of type (K, V) and (K, W), returns a dataset of (K,
(V, W)) pairs with all pairs of elements for each key. Outer joins are
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.
Actions:
Action Meaning
reduce(func) Aggregate the elements of the dataset using a function func (which takes
two arguments and returns one). The function should be commutative
and associative so that it can be computed correctly in parallel.
collect() Return all the elements of the dataset as an array at the driver program.
This is usually useful after a filter or other operation that returns a
sufficiently small subset of the data.
count() Return the number of elements in the dataset.
first() Return the first element of the dataset (similar to take(1)).
take(n) Return an array with the first n elements of the dataset.
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs
with the count of each key.
foreach(func) Run a function func on each element of the dataset. This is usually done
for side effects such as updating an Accumulator or interacting with
external storage systems.
Note: modifying variables other than Accumulators outside of
the foreach() may result in undefined behavior. See Understanding
closures for more details.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!