首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做program、代写python/Java语言设计
项目预算:
开发周期:
发布时间:
要求地区:
Homework 21
Due date: October 9, 2024 (Wednesday).
Please submit your answer by 11:59pm.
There are total of 6 questions.
Q1 (Reflection): Read the solution to HW 1.
• Are your own answers in line with the solutions? If not, list the questions you missed. • Discuss what you could have done better.
• OnascaleofA,B,C,D,howwouldyougradeyourHW1?
Q2 (Conditional expectation): Let the random vector (y,x)0 have a normal distribution with mean vector μ = (μy,μx)0 and covariance matrix
Σ= σy2 σyσxρ, σ x σ y ρ σ x2
where σy and σx are the standard deviations and ρ is the correlation between y and x. The joint density is
fY,X(y,x)= 1 exp −1(w−μ)0Σ−1(w−μ) , −∞
The determinant of the covariance matrix is
|Σ| = σy2σx2(1 − ρ2),
and the inverse of the covariance matrix is
Σ−1=1 σy2 −σyσx.
fY,X(y,x)=
1Last compiled: September 27, 2024; STAT5200, Fall 2023
−2ρ + .
exp −
2(1 − ρ2) σy
σy σx
σx
1ρ 1−ρ2−ρ 1
Thus, the joint density can be written as
1 2πσyσx(1 − ρ2)1/2
1 y−μy2 y−μy x−μx x−μx2
σ y σ x σ x2
The marginal density of x is
fX(x) =
that is, normal with mean μx and variance σx2.
fY,X(y,x)dy = √ 1. Derive conditional distribution of y given x.
exp
Z∞ −∞
1 2πσx
1 x−μx 2 −2 σ ,
2. Compute linear projection of y on x = (1,x). That is, derive and express L(y|1,x) as a function of μx, μy, ρ, σx, σy.
3. Define u = y − L(y|1, x). What is the distribution of u?
Q3 (Linear projection): The textbook (Wooldridge)’s definition of the linear projection is slightly different from that was introduced in the lecture notes (Notes 01). Wooldridge defines the linear projection in the following way,
Define x = (x1,...,xK) as a 1 × K vector, and make the assumption that the K × K variance matrix of x is nonsingular (positive definite). Then the linear projection of y on1,x1,x2,...,xK alwaysexistsandisunique:
L(y|1,x1,...,xK)=L(y|1,x)=β0 +β1x1 +...+βKxK =β0 +xβ, where, by definition,
β = [V ar(x)]−1Cov(x, y)
β0 =E[y]−E[x]β=E[y]−β1E[x1]−∙∙∙−βKE[xK].
Explain why this definition coincides with the definition that is introduced in the lecture notes (Notes 01). Provide a formal derivation as well. Hint: Answer is in Notes 01.
Q4 (Asymptotics, asymptotic normality): Let yi, i = 1, 2, ... be an independent, identically distributed sequence with E[yi2] < ∞. Let μ = E[yi] and σ2 = V ar(yi).
1. Let yN denote the sample average based on a sample size of N . Find V ar(√N (yN − μ)). 2. What is the asymptotic variance of √N (yN − μ)?
3. What is the asymptotic variance of yN ? Compare this with V ar(yN ).
4. What is the asymptotic standard deviation of yN ?
2
x
Q5 (Asymptotics, delta method): Let θˆ be a √N-asymptotically normal estimator for the scalar θ > 0. Let γˆ = log(θˆ) be an estimator of γ = log(θ).
1. Why is γˆ a consistent estimator of γ?
2. Find the asymptotic variance of √N(γˆ−γ) in terms of the asymptotic variance of √N(θˆ−θ).
3. Suppose that, for a sample of data, θˆ = 4 and se(θˆ) = 2. What is γˆ and its (asymptotic) standard error?
4. Consider the null hypothesis H0 : θ = 1. What is the asymptotic t statistic for testing H0, given the numbers from part 3?
5. Now state H0 from part 4 equivalently in terms of γ, and use γˆ and se(γˆ) to test H0. What do you conclude?
Q6 (Paper question): Find the paper that uses a delta method in your field. If you can’t find it, then find such paper from “American Economic Review”, which is one of the premier journal in economics.
1. Find an academic paper2 that (1) was published in one of those journals from your field of interest, AND (2) contains the word delta method, AND (3) the term delta method in the paper refers to the method that we learnt from the class, AND (4) applies the delta method.
One way to find such a paper is to use Google Scholar. Type the following in the search box
source:"[name of the journal]" "delta method"
2. Properly cite the paper you found (name of the author, the title of the article, year of publication, the name of the journal, etc.)
3. Read the paper and explain what is the main research question of the paper in one paragraph.
4. What is the parameter of interest in their empirical model, and why do the authors use the delta method?
5. (Optional reading; will not be graded). Read the following paper
Ver Hoef, J.M., 2012. Who invented the delta method?. The American Statistician, 66(2), pp.124-127.
(I put the copy of the paper in the HW section).
2If you can’t find such paper from the field of your interest, then find it from the “American Economic Review”, which is one of the premier journals in economics.
3
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写data driven business mod...
2024-11-12
代做acct1101mno introduction...
2024-11-12
代做can207 continuous and di...
2024-11-12
代做dsci 510: principles of ...
2024-11-12
代写25705 financial modellin...
2024-11-12
代做ccc8013 the process of s...
2024-11-12
代做intro to image understan...
2024-11-12
代写eco380: markets, competi...
2024-11-12
代写ems726u/p - engineering ...
2024-11-12
代写cive5975/cw1/2024 founda...
2024-11-12
代做csci235 – database syst...
2024-11-12
代做ban 5013 analytics softw...
2024-11-12
代写cs 17700 — lab 06 fall ...
2024-11-12
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!