首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做data编程、代写c++语言程序
项目预算:
开发周期:
发布时间:
要求地区:
Project 3: Introduction to X86-64 Assembly Programming
Grading Form
Goal
In this project you will write programs in x86-64 assembly language. It is important that you learn the x86-64 assembly language since it is the one you use every day in your PC, Mac, or in data.cs.purdue.edu. Also, this is a 64 bit architecture that uses 8 byte addresses and variable-length assembly instructions.
X86-64 Introduction
The X86-64 assembly language was created by AMD and then adopted by Intel. The X86-64 assembly language extends the x86 32 bit architecture to 64 bits. X86-64 is a superset of x86-32. It provides an incremental evolution to migrate from x86-32 bits to x86-64 bits and it is backward compatible.
Here is a good reference that can help you in programming with the X86-64. Section 3.2 on page 5 gives an example of a C program translated to X86-64, and Figure 2 on page 7 gives an explanation of each register (which is also shown below).
x86-64 tutorial
Also see the x86-64 assembly notes section in http://www.cs.purdue.edu/homes/cs250
The X86-64 architecture uses the following register assignment:
You will find many similarities with the ARM architecture. For instance, there are also 16 registers available to the user, though not all are typically used as general purpose registers. As opposed to using r0, r1, and so on, some registers are named due to backwards-compatibility: instead of receiving/passing arguments via r0, r1, r2, and r3, arguments are received and passed via %rdi, %rsi, %rdx, and %rcx. Some registers are callee saved and can be used as local variables. In addition, %rax is used to return values in functions, similar to how you would load r0 in ARM assembly before returning.
One of the main differences is that in the x86-64 architecture is that the order of the arguments is different than in the ARM. For example, in the instruction:
movq $3, %rsi
The first argument, numerical constant $3, is assigned into the register %rsi so the target register is on the right. In ARM, this would be equivalent to:
mov r2 #3
The x86-64 architecture is backward compatible with x86-32, and as such the 4 least significant bytes of registers %rax, %rbx, %rcx, %dx are compatible with the old x86-32 bit registers %eax, %ebx, %ecx, and %edx. We will only write programs using the 64-bit registers, so most of the instructions will end with "q" which means that they will work with 8 byte words.
The addressing modes in the x86-64 are the following: Immediate Value
movq $0x501208,%rdi
Direct Register Reference
movq %rax,%rdi
Indirect through a register
movq %rsi,(%rdi )
Direct Memory Reference
movq 0x501208,%rdi
#Put in register %rdi the constant 0x501208
#Move the contents of register %rax to %rdi
#Store the value in %rsi in the address contained in %rdi
#Fetch the contents in memory at address 0x501308 and store it in %rdi
Task 1: Your first X86-64 Assembly Program
Login to data.cs.purdue.edu and create a directory project-3-src where you will put all your code:
Type:
You will do all your work in data.cs.purdue.edu and in the directory ~/cs250/project-3-src.
Type the following program sqr.s that squares a number read from the terminal, then prints the result. Important note: it is easy to miss that your “main'' function will be declared with .globl in x86 as opposed to .global in ARM.
cd
mkdir -p cs250/project-3-src
cd cs250/project-3-src
# Define global variable a in data section
.data
.comm a,8
.text
format1:
.string "a="
format2:
.string "%ld"
format3:
.string "a^2 is %ld\n"
.globl main
main:
pushq %rbp
movq %rsp, %rbp
# long a;
movq $format1, %rdi #
movq $0, %rax #
call printf #
#
movq $format2, %rdi #
movq $a, %rsi #
movq $0, %rax #
call scanf #
#
movq $format3, %rdi #
movq $a, %rsi #
movq (%rsi),%rsi #
imulq %rsi,%rsi #
movq $0, %rax
call printf
leave ret
printf("a=");
similar to `bl printf` in ARM
scanf("%ld",&a);
printf("a^2 is %ld",a*a);
# pops the frame pointer #}
# main()
#
# Save frame pointer
#
#
# #
See what the program does line by line. You will find it very similar to ARM, such as how the argument registers are used (i.e. %rdi instead of r0, %rsi instead of r1 - library functions such as printf still need a format string and an address to put the value it scans in).
Then assemble it using the following command.
gcc -static -o sqr sqr.s
./sqr
The -static flag passed to gcc is used to make the .text section has a predefined loading address instead of being able to load it at random text addresses. The -static flags tells the compiler not to generate position independent code or PIC that is the default. One of the new security features of Linux is to load the program at random memory addresses every time you run it to make programs more difficult to hack. The flag -static will disable this feature in the assembly programs you write to make assembly programming easier.
Question 1. Write the code above into the file sqr.s, compile it and run it. Question 2. Explain what the following instructions do:
pushq %rbp # Save frame pointer movq %rsp, %rbp
......
leave
ret
Question 3.Write a program avg.s in assembly language that reads n numbers, then computes the sum and the average. The numbers are long integer of 8 bytes and the average will be truncated. Assume that the first number you read in will be the value of n, i.e. there will be n more inputs that follow.
./s
n? 5
3
6
8
1
5 SUM=23 AVG=4
Hint: Use the instruction "idivq" to compute the average. It might be helpful to look into commonly used X86-64 opcodes, as it may have some useful functionalities that ARM does not.
Task 2: Using Arrays in X86-64
The following C function computes the maximum of an array
// Finds the max value in an array
long maxarray(long n, long *a) {
long i=0;
long max = a[0];
while (i
if (max < a[i]) {
max = a[i]; }
i++; }
return max; }
The equivalent code in X86-64 assembly language is given here:
# maxarray.s
.text
.globl maxarray
maxarray:
pushq %rbp
movq %rsp, %rbp #
#
movq $0,%rdx #
movq (%rsi),%rax #
#
%rdx,%rdi #
jle afterw #
#
movq %rdx,%rcx #
imulq $8,%rcx #
while: cmpq
addq
cmpq jge movq
afterif: addq
jmp while
afterw: leave
ret
i=0 ;
max = a[0]
while (i
0)
//*(long*)((8*i+(char*)a)
long *tmp = &a[i];
if (max < *tmp) { // (max-*tmp<0)
max = *tmp
# // Finds the max value in an array
#
# long maxarray(long n, long *a) # //n=%rdi a=%rsi
# //i=%rdx max=%rax #
%rsi,%rcx #
#
(%rcx),%rax #
afterif #
(%rcx),%rax #
$1,%rdx
#}
# i++ ; #
#}
#
#}
# Save frame pointer
The C code maxarray.c that calls this function is the following:
// maxarray.c:
#include
long a[] = {4, 6, 3, 7, 9 };
extern long maxarray(long, long*);
int main() {
printf("maxarray(5,a)=%ld\n", maxarray(5,a));
}
To compile this programs type:
gcc -static -o maxarray maxarray.c maxarray.s
Question 4. Type the programs maxarray.s and maxarray.c, then test them. Also answer, what do the following instructions from the above code snippet do? Explain.
movq %rdx,%rcx
imulq $8,%rcx
addq %rsi,%rcx
Task 3: Implementing Bubble Sort in X86-64
Question 5. Implement a function bubblesort(long ascending, long n, long * a) in X86-64 in a file bubble.s that will sort an array of integers using bubblesort.
Here is the code in C that implements bubblesort. You have to implement it in X86-64 assembly language in the file bubble.s
void bubble_sort(long ascending, long n, long * a) { for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
long swap = 0;
if (ascending) {
if (array[j+1] < array[j]) {
swap = 1;
} else {
if (array[j+1] > array[j]) {
swap = 1
} }
if (swap) {
long temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;
}
} }
Then call it from the file bubble.c
// bubble.c:
#include
long a[] = {6, 7, 2, 3, 1, 9, 4, 5, 0, -9, 8};
long n = (sizeof(a)/sizeof(long));
extern void bubblesort(long ascending, long n, long * a);
void printArray(long n, long * a) {
for (int i = 0; i < n; i++) {
printf("%ld ", a[i]);
}
printf("\n");
}
int main(int argc, char ** argv)
{
printf("Before Ascending:\n");printArray(n,a);
bubblesort(1, n, a); // notice how we do not return anything here...
printf("After Ascending:\n");printArray(n,a);
printf("Before Descending:\n");printArray(n,a);
bubblesort(0, n, a); // notice how we do not return anything here...
printf("After Descending:\n");printArray(n,a);
}
To compile the program type
gcc -static -o bubble bubble.c bubble.s
Question 6. Complete the following Makefile that will make all the executables in this lab.
You may have used Makefiles in past lab courses without knowing it! Create a file named “Makefile” in your lab directory, and put the following contents in it - Bash knows the keyword “make” and will search for a Makefile, attempting to compile the “goal:” line it finds. This is easier than compiling each individual file when working on large projects, and will not compile a file if it has not been edited since the last time it was compiled (you will learn more about this in CS252).
# TODO: Modify the below to compile bubble as well
goal: sqr maxarray
sqr: sqr.s
gcc -static -o sqr sqr.s
maxarray: maxarray.s maxarray.c
gcc -static -o maxarray maxarray.c maxarray.s
clean:
rm -f sqr maxarray
To use the Makefile, type:
make clean
make
Turnin
Follow these instructions to turnin project-3:
Make sure that your programs are built by typing "make". Make sure it builds and runs in data.cs.purdue.edu etc.
If you have not created a project-3-src create it. Type:
cd
cd cs250
mkdir project-3-src
Copy your files into project-3-src/ and cd to the parent directory of
project-3-src. Then type:
turnin -c cs250 -p project-3 project-3-src
Then, you may type "turnin -c cs250 -p project-3 -v" to make sure you have submitted the correct files - remember the -v flag, or it will ask you if you wish to resubmit your lab again.
You will show your programs to the lab instructor and TAs during lab time next week.
Rubric:
Q1. __/10 points
Q2. __/10 points
Q3. __/30 points
Q4. __/10 points
Q5. __/30 points
Q6. __/10 points
Project 3 Grading Form
Question
Max
Current
Question 1. Write the code above into the file sqr.s, compile it and run it.
10
Question 2. Explain what the following instructions do:
pushq %rbp # Save frame pointer
movq %rsp, %rbp ......
leave
ret
10
Question 3.Write a program avg.s
30
Question 4. Type the programs maxarray.s and maxarray.c
10
Question 5. Implement a function bubblesort(long ascending, long n, long * a)
30
Question 6. Complete the following Makefile
10
Total: Max 100
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写data driven business mod...
2024-11-12
代做acct1101mno introduction...
2024-11-12
代做can207 continuous and di...
2024-11-12
代做dsci 510: principles of ...
2024-11-12
代写25705 financial modellin...
2024-11-12
代做ccc8013 the process of s...
2024-11-12
代做intro to image understan...
2024-11-12
代写eco380: markets, competi...
2024-11-12
代写ems726u/p - engineering ...
2024-11-12
代写cive5975/cw1/2024 founda...
2024-11-12
代做csci235 – database syst...
2024-11-12
代做ban 5013 analytics softw...
2024-11-12
代写cs 17700 — lab 06 fall ...
2024-11-12
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!