首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写data编程、代做SQL设计编程
项目预算:
开发周期:
发布时间:
要求地区:
Background:
Nations Info Corp is an online subscription provider of real estate and credit monitoring services.
Our customers pay a monthly membership fee, after a usually $1 trial for several days. One of
the challenges of a subscription business is to forecast the subscription revenue we collect from
each customer (also known as LTV or CLV, lifetime value). On one hand, it's necessary to know
the LTV because we need that value to know if the business is profitable. For instance, if the
LTV is $100 but we are paying $120 to acquire each customer, that is clearly not a profitable
business to pursue. On the other hand, it is very difficult to know what the LTV is when you first
acquire the customer, since it may take many months for the revenue to come in, as we charge
the customer each month they remain a member subscribed to our product.
Data:
We are using a cohort approach for data analysis. For this exercise, we will define the cohort as
the group of customers that sign up in a given month (e.g. January 2020).
We collect cohort data from 2020 to 2022 for 2 different verticals of business (rto: rent-to-own
and credco: credit monitor). We wanted to use various short term metrics (i.e. how they
performed within 1 month from signup) to predict long term LTV. Data is provided in the
“historical data.csv” file. Here is the data dictionary:
Numbers #:
M0#: number of signups we get. Serve as the denominator of all following metrics.
Dollar Amounts $:
LTV 0-15: average money we collect from customers in 15 days from signup.
LTV 0-30: average money we collect from customers in 30 days from signup.
LTV 0-360: average money we collect from customers in 360 days from signup.
Percentages %:
C0%: cancels on the same day of signup.
C1%: cancels during the trial period, before the first monthly bill.
D0%: failed to pay for signup due to card declines.
D1%: succeeded to stay the trial period but failed to pay for the first monthly bill due to card
declines.
M1%: succeeded to stay the trial period and pay for the first monthly bill.
MOBILE%: signups using mobile device.
PREPAID%: signups using prepaid card.
LOGIN RATE%: login to account after initial singup
SEARCH RATE%: search for properties after initial signup (not available for credit business)
PDP VIEW RATE%: view the property details after initial signup (not available for credit
business)Task 1:
Our team is tasked with forecasting the LTV 0-360 using the given metrics and any external
data. Marketing and product teams are interested in how data analysis and predictive modeling
could help with their business decisions.
Please compile your Python / R codes and results in a .html file. Also feel free to use any
business intelligence tools to present insights.
Task 2:
We are constantly testing new features on the sites and want to assess performance of the
changes and optimize profitability of the overall business. We tested different price points of
subscription fees on “rto” business recently, where our old version (Variant A) was put head to
head in a test against the new version (Variant B). The visitor traffic is supposed to split evenly
between A and B.
Analyze the test results and present findings, giving a recommendation about what we
should do for the traffic that is being tested.
Variant A: $49 monthly subscription fee after 7 days trial.
Variant B: $39 monthly subscription fee after 7 days trial.
Data is provided in the “test result.csv” file. Here is the dictionary for additional metrics than the
historical dataset:
VISITORS#: number of unique people who visit our website, before signup.
CPA$: cost we pay to partners on each signup.
Task 3 (SQL Question):
Table1: “orders” - the information of each order being placed
Column Name Type
order_id number
order_status varchar
signup_type varchar
order_datetime timestamp
jluvr varchar
Table 2: “activities” - the users activities on our website, whether before or after the orderColumn Name Type
id number
action_type varchar
user_data varchar
created_at timestamp
jluvr varchar
Prompt:
“jluvr” is a key to define each individual user visiting our website, and can be used to link
“orders” and “activities” tables. Note jluvr is not unique in either orders or activities table (i.e.
same user can place multiple orders and can have multiple activities).
We wanted to find the last activity of users before each order being placed. The result will
show each unique order, and the matched activity if it exists (if not exists, shows null and keeps
the order info). Feel free to state proper assumptions if any are not clarified above.
Please submit the SQL codes in a plain text file / doc.
Sample Output:
order_id jluvr order_dateti
me
created_at action_type user_data
1001 abc-123-def 2023-12-01
08:00:00
2023-12-01
07:58:00
form_submit rent
1002 abc-123-def 2023-12-01
09:00:00
2023-12-01
08:02:00
form_submit own
1003 abc-123-efg 2023-12-01
10:00:00
2023-12-01
09:55:00
form_view own
1004 abc-123-fgh 2023-12-01
10:01:00
(null) (null) (null)
… … … … … …
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写data driven business mod...
2024-11-12
代做acct1101mno introduction...
2024-11-12
代做can207 continuous and di...
2024-11-12
代做dsci 510: principles of ...
2024-11-12
代写25705 financial modellin...
2024-11-12
代做ccc8013 the process of s...
2024-11-12
代做intro to image understan...
2024-11-12
代写eco380: markets, competi...
2024-11-12
代写ems726u/p - engineering ...
2024-11-12
代写cive5975/cw1/2024 founda...
2024-11-12
代做csci235 – database syst...
2024-11-12
代做ban 5013 analytics softw...
2024-11-12
代写cs 17700 — lab 06 fall ...
2024-11-12
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!