首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP5328代做、代写Python程序语言
项目预算:
开发周期:
发布时间:
要求地区:
COMP5328 - Advanced Machine Learning
Assignment 1
Due: 19/09/2024, 11:59PM
This assignment is to be completed in groups of 3 to 4 students. It is worth 25%
of your total mark.
1 Objective
The objective of this assignment is to implement Non-negative Matrix Factorization
(NMF) algorithms and analyze the robustness of NMF algorithms when the
dataset is contaminated by large magnitude noise or corruption. More speciffcally,
you should implement at least two NMF algorithms and compare their robustness.
2 Instructions
2.1 Dataset description
In this assignment, you need to apply NMF algorithms on two real-world face
image datasets: (1) ORL dataset
1
; (2) Extended YaleB dataset
2
.
• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images
per subject). For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. All images are cropped and resized
to 92×112 pixels.
• Extended YaleB dataset: it contains 2414 images of 38 subjects under
9 poses and 64 illumination conditions. All images are manually aligned,
cropped, and then resized to 168×192 pixels.
1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
1Figure 1: An example face image and its occluded versions by b × b-blocks with
b = 10, 12, and 14 pixels.
Note: we provide a tutorial for this assignment, which contains example code for
loading a dataset to numpy array. Please ffnd more details in assignment1.ipynb.
2.2 Assignment tasks
1. You need to implement at least two Non-negative Matrix Factorization (NMF)
algorithms:
• You should implement at least two NMF algorithms with at least one
not taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost
Based NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based
NMF).
• For each algorithm, you need to describe the deffnition of the objective
function as well as the optimization methods used in your implementation.
2.
You need to analyze the robustness of each algorithm on two datasets:
• You are allowed to design your own data preprocessing method (if necessary).
•
You need to use a block-occlusion noise similar to those shown in Figure
1. The noise is generated by setting the pixel values to be 255 in the
block. You can design your own value for b (not neccessary to be 10, 12
or 14). You are also encouraged to design your own noise other than
the block-occlusion noise.
2• You need to demonstrate each type of noise used in your experiment
(show the original image as well as the image contaminated by noise).
• You should carefully choose the NMF algorithms and design experiment
settings to clearly show the different robustness of the algorithms you
have implemented.
3. You are only allowed to use the python standard library, numpy and
scipy (if necessary) to implement NMF algorithms.
2.3 Programming and External Libraries
This assignment is required to be ffnished by Python3. When you implement
NMF algorithms, you are not allowed to use external libraries which contains
NMF implementations, such as scikit-learn, and Nimfa (i.e., you have to implement
the NMF algorithms by yourself). You are allowed to use scikit-learn
for evaluation only (please ffnd more details in assignment1.ipynb). If you have
any ambiguity whether you can use a particular library or a function, please post
on canvas under the ”Assignment 1” thread.
2.4 Evaluate metrics
To compare the performance and robustness of different NMF algorithms, we provide
three evaluation metrics: (1) Relative Reconstruction Errors; (2) Average
Accuracy (optional); (3) Normalized Mutual Information (optional). For all
experiments, you need to use at least one metric, i.e., Relative Reconstruction
Errors. You are encouraged to use the other two metrics, i.e., Average
Accuracy and Normalized Mutual Information.
• Relative Reconstruction Errors (RRE): let V denote the contaminated
dataset (by adding noise), and Vˆ denote the clean dataset. Let W and H
denote the factorization results on V , the relative reconstruction errors
then can be deffned as follows:
RRE =
∥Vˆ − WH∥F
∥Vˆ ∥F
. (1)
• Average Accuracy: Let W and H denote the factorization results on
V , you need to perform some clustering algorithms (i.e., K-means) with
num clusters equal to num classes. Each example is assigned with the
cluster label (please ffnd more details in assignment1.ipynb). Lastly, you
3can evaluate the accuracy of predictions Ypred as follows:
Acc(Y, Ypred) =
1
n
Xn
i=1
1{Ypred(i) == Y (i)}.
• Normalized Mutual Information (NMI):
NMI(Y, Ypred) =
2I(Y, Ypred)
H(Y ) + H(Ypred)
,
where I(·, ·) is mutual information and H(·) is entropy.
Note: we expect you to have a rigorous performance evaluation. To provide
an estimate of the performance of the algorithms in the report, you can repeat
multiple times (e.g., 5 times) for each experiment by randomly sampling 90% data
from the whole dataset, and average the metrics on different subset. You are also
required to report the standard deviations.
3 Report
The report should be organized similar to research papers, and should contain the
following sections:
• In abstract, you should brieffy introduce the topic of this assignment and
describe the organization of your report.
• In introduction, you should ffrst introduce the main idea of NMF as well
as its applications. You should then give an overview of the methods you
want to use.
• In related work, you are expected to review the main idea of related NMF
algorithms (including their advantages and disadvantages).
• In methods, you should describe the details of your method (including
the deffnition of cost functions as well as optimization steps). You should
also describe your choices of noise and you are encouraged to explain the
robustness of each algorithm from theoretical view.
• In experiment, ffrstly, you should introduce the experimental setup (e.g.,
datasets, algorithms, and noise used in your experiment for comparison).
Second, you should show the experimental results and give some comments.
• In conclusion, you should summarize your results and discuss your insights
for future work.
4• In reference, you should list all references cited in your report and formatted
all references in a consistent way.
The layout of the report:
• Font: Times New Roman; Title: font size 14; Body: font size 12
• Length: Ideally 10 to 15 pages - maximum 20 pages
Note: Submissions must be typeset in LaTex using the provided template.
4 Submissions
Detailed instructions are as follows:
1. The submission contains two parts: report and source code.
(a) report (a pdf ffle): the report should include each member’s details
(student id and name).
(b) code (a compressed folder)
i. algorithm (a sub-folder): your code could be multiple ffles.
ii. data (an empty sub-folder): although two datasets should be inside
the data folder, please do not include them in the zip ffle. We will
copy two datasets to the data folder when we test the code.
2. The report (ffle type: pdf) and the codes (ffle type: zip) must be named
as student ID numbers of all group members separated by underscores. For
example, “xxxxxxxx xxxxxxxx xxxxxxxx.pdf”.
3. OOnly one student needs to submit your report (ffle type: pdf) to Assignment
1 (report) and upload your codes (ffle type: zip) to Assignment 1
(codes).
4. Your submission should include the report and the code. A plagiarism
checker will be used.
5. You need to clearly provide instructions on how to run your code in the
appendix of the report.
6. You need to indicate the contribution of each group member.
7. A penalty of minus 5 (5%) marks per each day after due (email late submissions
to TA and conffrm late submission dates with TA). Maximum delay is
10 days, after that assignments will not be accepted.
55 Marking scheme
Category Criterion Marks Comments
Report [80]
Abstract [3]
•problem, methods, organization.
Introduction [5]
•What is the problem you intend to solve?
•Why is this problem important?
Previous work [6]
•Previous relevant methods used in literature?
Methods [25]
•Pre-processing (if any)
•NMF Algorithm’s formulation.
•Noise choice and description.
Experiments and Discussions [25]
•Experiments, comparisons and evaluation
•Extensive analysis and discussion of results
•Relevant personal reflection
Conclusions and Future work [3]
•Meaningful conclusions based on results
•Meaningful future work suggested
Presentation [5]
•Grammatical sentences, no spelling mistakes
•Good structure and layout, consistent formatting
•Appropriate
citation and referencing
•Use graphs and tables to summarize data
Other [8]
•At the discretion of the marker: for impressing
the marker, excelling expectation,
etc. Examples include clear presentation,
well-designed experiment, fast code, etc.
6Category Criterion Marks Comments
Code [20]
•Code runs within a feasible time
•Well organized, commented and documented
Penalties [−]
•Badly written code: [−20]
•Not including instructions on how to run
your code: [−20]
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).
7
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!