首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MATH3075代写、Python/Java语言编程代做
项目预算:
开发周期:
发布时间:
要求地区:
ASSIGNMENT 1
MATH3075 Financial Derivatives (Mainstream)
Due by 11:59 p.m. on Sunday, 8 September 2024
1. [12 marks] Single-period multi-state model. Consider a single-period market
model M = (B, S) on a finite sample space Ω = {ω1, ω2, ω3}. We assume that the
money market account B equals B0 = 1 and B1 = 4 and the stock price S = (S0, S1)
satisfies S0 = 2.5 and S1 = (18, 10, 2). The real-world probability P is such that
P(ωi) = pi > 0 for i = 1, 2, 3.
(a) Find the class M of all martingale measures for the model M. Is the market
model M arbitrage-free? Is this market model complete?
(b) Find the replicating strategy (ϕ) for the contingent claim X = (5, 1, −3)
and compute the arbitrage price π0(X) at time 0 through replication.
(c) Compute the arbitrage price π0(X) using the risk-neutral valuation formula
with an arbitrary martingale measure Q from M.
(d) Show directly that the contingent claim Y = (Y (ω1), Y (ω2), Y (ω3)) = (10, 8, −2)
is not attainable, that is, no replicating strategy for Y exists in M.
(e) Find the range of arbitrage prices for Y using the class M of all martingale
measures for the model M.
(f) Suppose that you have sold the claim Y for the price of 3 units of cash. Show
that you may find a portfolio (x, ϕ) with the initial wealth x = 3 such that
V1(x, ϕ) > Y , that is, V1(x, ϕ)(ωi) > Y (ωi) for i = 1, 2, 3.
2. [8 marks] Static hedging with options. Consider a parametrised family of
European contingent claims with the payoff X(L) at time T given by the following
expression
X(L) = min
2|K − ST | + K − ST , L
where a real number K > 0 is fixed and L is an arbitrary real number such that
L ≥ 0.
(a) For any fixed L ≥ 0, sketch the profile of the payoff X(L) as a function of ST ≥ 0
and find a decomposition of X(L) in terms of the payoffs of standard call and
put options with maturity date T (do not use a constant payoff). Notice that a
decomposition of X(L) may depend on the value of the parameter L.
(b) Assume that call and put options are traded at time 0 at finite prices. For
each value of L ≥ 0, find a representation of the arbitrage price π0(X(L)) of
the claim X(L) at time t = 0 in terms of prices of call and put options at time
0 using the decompositions from part (a).
(c) Consider a complete arbitrage-free market model M = (B, S) defined on some
finite state space Ω. Show that the arbitrage price of X(L) at time t = 0 is a
monotone function of the variable L ≥ 0 and find the limits limL→3K π0(X(L)),
limL→∞ π0(X(L)) and limL→0 π0(X(L)) using the representations from part (b).
(d) For any L > 0, examine the sign of an arbitrage price of the claim X(L) in any
(not necessarily complete) arbitrage-free market model M = (B, S) defined on
some finite state space Ω. Justify your answer.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!