首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MAST30027代做、Java/C++设计程序代写
项目预算:
开发周期:
发布时间:
要求地区:
MAST30027: Modern Applied Statistics
Assignment 2, 2024.
Due: 11:59pm Monday September 2nd
This assignment is worth 8% of your total mark.
To get full marks, show your working including 1) R commands and outputs you use, 2)
mathematics derivation, and 3) rigorous explanation why you reach conclusions or answers.
If you just provide final answers, you will get zero mark.
The assignment you hand in must be typed (except for math formulas), and be submitted
using LMS as a single PDF document only (no other formats allowed). For math formulas,
you can take a picture of them. Your answers must be clearly numbered and in the same
order as the assignment questions.
The LMS will not accept late submissions. It is your responsibility to ensure that your
assignments are submitted correctly and on time, and problems with online submissions are
not a valid excuse for submitting a late or incorrect version of an assignment.
We will mark a selected set of problems. We will select problems worth ≥ 50% of the full
marks listed.
If you need an extension, please contact the lecturer before the due date with appropriate
justification and supporting documents. Late assignments will only be accepted if you have
obtained an extension from the lecturer before the due date. To ensure that the lecturer
responds to your extension request email before the due date, please contact 24h before the
due date. Under no circumstances an assignment will be marked if solutions for it have been
released.
Also, please read the “Assessments” section in “Subject Overview” page of the LMS.
1. The inverse Gaussian distribution has p.d.f.
f(x;μ, λ) =
(
λ
2pix3
)1/2
exp
(?λ(x? μ)2
2μ2x
)
for x > 0, where μ > 0 and λ > 0.
(a) (5 marks) Show that the inverse Gaussian distribution is an exponential family.
(b) (5 marks) Obtain the canonical link and the variance function.
[hint: you could consider θ = ?1/μ2.]
2. (30 marks)
Note: There is no unique answer for this problem. The report for this prob-
lem should be typed. Hand-written report or report including screen-captured
R codes or figures won’t be marked. An example report written by a student
previous year has been posted on LMS.
1
Data: The dataset comes from the Fiji Fertility Survey and shows data on the number of
children ever born to married women of the Indian race classified by duration since their
first marriage (grouped in six categories), type of place of residence (Suva, urban, and rural),
and educational level (classified in four categories: none, lower primary, upper primary, and
secondary or higher). The data can be found in the file assignment2 prob2.txt. The
dataset has 70 rows representing 70 groups of families. Each row has entries for:
duration: marriage duration of mothers in each group (years),
residence: residence of families in each group (Suva, urban, rural),
education: education of mothers in each group (none, lower primary, upper primary,
secondary+),
nChildren: number of children ever born in each group (e.g. 4), and
nMother: number of mothers in each group (e.g. 8).
We can summarise data as a table as follows.
> data <- read.table(file ="assignment2_prob2.txt", header=TRUE)
> data$duration <- factor(data$duration, levels=c("0-4","5-9","10-14","15-19","20-24","25-29")
> , ordered=TRUE)
> data$residence <- factor(data$residence, levels=c("Suva", "urban", "rural"))
> data$education <- factor(data$education, levels=c("none", "lower", "upper", "sec+"))
> ftable(xtabs(cbind(nChildren,nMother) ~ duration + residence + education, data))
Problem: We want to determine which factors (duration, residence, education) and two-
way interactions are related to the number of children per woman (fertility rate). The
observed number of children ever born in each group (nChildren) depends on the number of
mothers (nMother) in each group. We must take account of the difference in the number of
mothers (hint: one of the lab problems shows how to handle this issue). Write a report on
the analysis that should summarise the substantive conclusions and include the highlights
of your analysis: for example, data visualisation, choice of model (e.g., Poisson, binomial,
gamma, etc), model fitting and model selection (e.g., using AIC), diagnostic, check for
overdispersion if necessary, and summary/interpretation of your final model.
At each step of your analysis, you should write why you do that and your interpreta-
tion/conclusion. For example, “I make an interaction plot to see whether there are in-
teractions between X and Y”, show a plot, and “It seems that there are some interaction
between X and Y”.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写data driven business mod...
2024-11-12
代做acct1101mno introduction...
2024-11-12
代做can207 continuous and di...
2024-11-12
代做dsci 510: principles of ...
2024-11-12
代写25705 financial modellin...
2024-11-12
代做ccc8013 the process of s...
2024-11-12
代做intro to image understan...
2024-11-12
代写eco380: markets, competi...
2024-11-12
代写ems726u/p - engineering ...
2024-11-12
代写cive5975/cw1/2024 founda...
2024-11-12
代做csci235 – database syst...
2024-11-12
代做ban 5013 analytics softw...
2024-11-12
代写cs 17700 — lab 06 fall ...
2024-11-12
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!