首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写MTH5510、代做Matlab程序语言
项目预算:
开发周期:
发布时间:
要求地区:
MTH5510: QRM - Exercises Set 2
Due date: August 12, 2024;12:00pm;
Analysis the output of the Matlab code is mandatory. I am not interested just to the Matlab code.
Hand in stapled hardcopy at the beginning of the tutorial session
Note: You might want to use Matlab for this exercise; adequately report and comment on your
results (For a quick introduction to Matlab visit http://www.mathworks.com/access/helpdesk/
help/pdf_doc/matlab/getstart.pdf)
Exercise I: This question deals with a portfolio of five stocks. At time t, the values of the stocks
are S1,t = 100, S2,t = 50, S3,t = 25, S4,t = 75, and S5,t = 150. The portfolio consists of 1 share
of S1, 3 shares of S2, 5 shares of S3, 2 shares of S4, and 4 shares of S5. These risk factors are
logarithmic prices and the factor changes have mean zero and standard deviations 10?3, 2 · 10?3,
3 · 10?3, 1.5 · 10?3, and 2.5 · 10?3, respectively. The risk factors are independent.
1. Compute VaRα, VaR
mean
α , and ESα using Monte Carlo with 10,000 simulations. Do this for
α = {0.90, 0.91, . . . , 0.99}. Also use the following distributions for the risk factor changes:
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(3, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(10, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(50, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ N (μ, σ2)
Plot the results.
2. Comment on the following:
The value of VaRα compared to VaRmeanα
The value of VaRα and ESα as compared between the four distributions. Are the results
what you expected?
Exercise II: This question deals with delta hedged call option. The following are the Black-
Scholes parameters for a European call option at time t = 0:
T = 0.5
rt = 0.05
σt = 0.2
St = 100
K = 100.
1
The portfolio consists of long position on the call option, and the corresponding position in the
stock which makes the portfolio delta neutral. Let ? = 1day, Z1 = log(S), and Z2 = σ (r
will be considered in this problem). The risk factor changes are normally distributed with mean
zero. Their standard deviations over one day are 10?3 and 10?4 and their correlation is ?0.5.
(a) Compute V aRα, V aR
mean
α , and ESα for α = 0.95 and α = 0.99 using the following
methods:
Monte Carlo full revaluation with 10,000 simulations
Monte Carlo on the linearized loss with 10,000 simulations
Variance-covariance method
Do not neglect the time derivative in any linearizion in this question.
Exercise III: Let L have the Student t distribution with ν degree of freedom. Derive the
formula
ESα(L) =
(
gν(t
?1
ν (α))
1? α
)(
ν + (t?1ν (α))2
ν ? 1
)
.
You will need to look up the probability density function of the distribution at hand.
2
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!