首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP9417 代做、代写 Python 语言程序
项目预算:
开发周期:
发布时间:
要求地区:
COMP9417 - Machine Learning
Homework 2: Bias, Variance and an application of Gradient
Descent
Introduction In this homework we revisit the notion of bias and variance as metrics for characterizing the
behaviour of an estimator. We then take a look at a new gradient descent based algorithm for combining
different machine learning models into a single, more complex, model.
Points Allocation There are a total of 28 marks.
Question 1 a): 1 mark
Question 1 b): 3 marks
Question 1 c): 3 marks
Question 1 d): 1 mark
Question 1 e): 1 mark
Question 2 a): 3 marks
Question 2 b): 2 marks
Question 2 c): 6 marks
Question 2 d): 2 marks
Question 2 e): 3 marks
Question 2 f): 2 marks
Question 2 g): 1 mark
What to Submit
A single PDF file which contains solutions to each question. For each question, provide your solution
in the form of text and requested plots. For some questions you will be requested to provide screen
shots of code used to generate your answer — only include these when they are explicitly asked for.
.py file(s) containing all code you used for the project, which should be provided in a separate .zip
file. This code must match the code provided in the report.
1
You may be deducted points for not following these instructions.
You may be deducted points for poorly presented/formatted work. Please be neat and make your
solutions clear. Start each question on a new page if necessary.
You cannot submit a Jupyter notebook; this will receive a mark of zero. This does not stop you from
developing your code in a notebook and then copying it into a .py file though, or using a tool such as
nbconvert or similar.
We will set up a Moodle forum for questions about this homework. Please read the existing questions
before posting new questions. Please do some basic research online before posting questions. Please
only post clarification questions. Any questions deemed to be fishing for answers will be ignored
and/or deleted.
Please check Moodle announcements for updates to this spec. It is your responsibility to check for
announcements about the spec.
Please complete your homework on your own, do not discuss your solution with other people in the
course. General discussion of the problems is fine, but you must write out your own solution and
acknowledge if you discussed any of the problems in your submission (including their name(s) and
zID).
As usual, we monitor all online forums such as Chegg, StackExchange, etc. Posting homework ques-
tions on these site is equivalent to plagiarism and will result in a case of academic misconduct.
You may not use SymPy or any other symbolic programming toolkits to answer the derivation ques-
tions. This will result in an automatic grade of zero for the relevant question. You must do the
derivations manually.
When and Where to Submit
Due date: Week 5, Friday June 28th, 2024 by 5pm. Please note that the forum will not be actively
monitored on weekends.
Late submissions will incur a penalty of 5% per day from the maximum achievable grade. For ex-
ample, if you achieve a grade of 80/100 but you submitted 3 days late, then your final grade will be
80? 3× 5 = 65. Submissions that are more than 5 days late will receive a mark of zero.
? Submission must be made on Moodle, no exceptions.
Page 2
Question 1. Bias of Estimators
Let γ > 0 and suppose that X1, . . . , Xn
i.i.d.~ N(γ, γ2). We define:
X =
1
n
n∑
i=1
Xi,
S2 =
1
n? 1
n∑
i=1
(Xi ?X)2.
You may use the following two facts without proof:
(F1) X and S2 are independent.
(F2) X and c?S are both unbiased estimators of γ.1
What to submit: for all parts (a)-(e), include your working out, either typed or handwritten. For all parts, you
must show all working for full credit. Answers without working will receive a grade of zero.
(a) Consider the estimator:
T1 = aX + (1? a)c?S.
Show that for any choice of constant a, T1 is unbiased for γ.
(b) What choice of a gives you the best (in the sense of MSE) possible estimator? Derive an explicit
expression for this optimal choice of a. We refer to this estimator as T ?1 .
(c) Consider now a different estimator:
T2 = a1Xˉ + a2(c?S),
and we do not make any assumptions about the relationship between a1 and a2. Find the con-
stants a1, a2 explicitly that make T2 best (from the MSE perspective), i.e. choose a1, a2 to minimize
MSE(T2) = E(T2 ? γ)2. We refer to this estimator as T ?2 .
(d) Show that T ?2 has MSE that is less than or equal to the MSE of T ?1 .
(e) Consider the estimator V+ = max{0, T ?2 }. Show that the MSE of V+ is smaller than or equal to the
MSE of T ?2 .
Question 2. Gradient Descent for Learning Combinations of Models
In this question, we discuss and implement a gradient descent based algorithm for learning combina-
tions of models, which are generally termed ’ensemble models’. The gradient descent idea is a very
powerful one that has been used in a large number of creative ways in machine learning beyond direct
minimization of loss functions.
The Gradient-Combination (GC) algorithm can be described as follows: Let F be a set of base learning
algorithms2. The idea is to combine the base learners in F in an optimal way to end up with a good
learning algorithm. Let `(y, y?) be a loss function, where y is the target, and y? is the predicted value.3
Suppose we have data (xi, yi) for i = 1, . . . , n, which we collect into a single data set D0. We then set
the number of desired base learners to T and proceed as follows:
1You do not need to worry about knowing or calculating c? for this question, it is just some constant.
2For example, you could take F to be the set of all regression models with a single feature, or alternatively the set of all regression
models with 4 features, or the set of neural networks with 2 layers etc.
3Note that this set-up is general enough to include both regression and classification algorithms.
Page 3
(I) Initialize f0(x) = 0 (i.e. f0 is the zero function.)
(II) For t = 1, 2, . . . , T :
(GC1) Compute:
rt,i = ? ?
?f(xi)
n∑
j=1
`(yj , f(xj))
∣∣∣∣
f(xj)=ft?1(xj), j=1,...,n
for i = 1, . . . , n. We refer to rt,i as the i-th pseudo-residual at iteration t.
(GC2) Construct a new pseudo data set, Dt, consisting of pairs: (xi, rt,i) for i = 1, . . . , n.
(GC3) Fit a model to Dt using our base class F . That is, we solve
ht = arg min
f∈F
n∑
i=1
`(rt,i, f(xi))
(GC4) Choose a step-size. This can be done by either of the following methods:
(SS1) Pick a fixed step-size αt = α
(SS2) Pick a step-size adaptively according to
αt = arg min
α
n∑
i=1
`(yi, ft?1(xi) + αht(xi)).
(GC5) Take the step
ft(x) = ft?1(x) + αtht(x).
(III) return fT .
We can view this algorithm as performing (functional) gradient descent on the base class F . Note that
in (GC1), the notation means that after taking the derivative with respect to f(xi), set all occurences
of f(xj) in the resulting expression with the prediction of the current model ft?1(xj), for all j. For
example:
?
?x
log(x+ 1)
∣∣∣∣
x=23
=
1
x+ 1
∣∣∣∣
x=23
=
1
24
.
(a) Consider the regression setting where we allow the y-values in our data set to be real numbers.
Suppose that we use squared error loss `(y, y?) = 12 (y? y?)2. For round t of the algorithm, show that
rt,i = yi ? ft?1(xi). Then, write down an expression for the optimization problem in step (GC3)
that is specific to this setting (you don’t need to actually solve it).
What to submit: your working out, either typed or handwritten.
(b) Using the same setting as in the previous part, derive the step-size expression according to the
adaptive approach (SS2).
What to submit: your working out, either typed or handwritten.
(c) We will now implement the gradient-combination algorithm on a toy dataset from scratch, and we
will use the class of decision stumps (depth 1 decision trees) as our base class (F), and squared error
loss as in the previous parts.4. The following code generates the data and demonstrates plotting
the predictions of a fitted decision tree (more details in q1.py):
4In your implementation, you may make use of sklearn.tree.DecisionTreeRegressor, but all other code must be your
own. You may use NumPy and matplotlib, but do not use an existing implementation of the algorithm if you happen to find one.
Page 4
1 np.random.seed(123)
2 X, y = f_sampler(f, 160, sigma=0.2)
3 X = X.reshape(-1,1)
4
5 fig = plt.figure(figsize=(7,7))
6 dt = DecisionTreeRegressor(max_depth=2).fit(X,y) # example model
7 xx = np.linspace(0,1,1000)
8 plt.plot(xx, f(xx), alpha=0.5, color=’red’, label=’truth’)
9 plt.scatter(X,y, marker=’x’, color=’blue’, label=’observed’)
10 plt.plot(xx, dt.predict(xx.reshape(-1,1)), color=’green’, label=’dt’) # plotting
example model
11 plt.legend()
12 plt.show()
13
The figure generated is
Your task is to generate a 5 x 2 figure of subplots showing the predictions of your fitted gradient-
combination model. There are 10 subplots in total, the first should show the model with 5 base
learners, the second subplot should show it with 10 base learners, etc. The last subplot should be
the gradient-combination model with 50 base learners. Each subplot should include the scatter of
data, as well as a plot of the true model (basically, the same as the plot provided above but with
your fitted model in place of dt). Comment on your results, what happens as the number of base
learners is increased? You should do this two times (two 5x2 plots), once with the adaptive step
size, and the other with the step-size taken to be α = 0.1 fixed throughout. There is no need to
split into train and test data here. Comment on the differences between your fixed and adaptive
step-size implementations. How does your model perform on the different x-ranges of the data?
What to submit: two 5 x 2 plots, one for adaptive and one for fixed step size, some commentary, and a screen
shot of your code and a copy of your code in your .py file.
Page 5
(d) Repeat the analysis in the previous question but with depth 2 decision trees as base learners in-
stead. Provide the same plots. What do you notice for the adaptive case? What about the non-
adaptive case? What to submit: two 5 x 2 plots, one for adaptive and one for fixed step size, some commen-
tary, and a copy of your code in your .py file.
(e) Now, consider the classification setting where y is taken to be an element of {?1, 1}. We consider
the following classification loss: `(y, y?) = log(1 + e?yy?). For round t of the algorithm, what is the
expression for rt,i? Write down an expression for the optimization problem in step (GC3) that is
specific to this setting (you don’t need to actually solve it).
What to submit: your working out, either typed or handwritten.
(f) Using the same setting as in the previous part, write down an expression for αt using the adaptive
approach in (SS2). Can you solve for αt in closed form? Explain.
What to submit: your working out, either typed or handwritten, and some commentary.
(g) In practice, if you cannot solve for αt exactly, explain how you might implement the algorithm.
Assume that using a constant step-size is not a valid alternative. Be as specific as possible in your
answer. What, if any, are the additional computational costs of your approach relative to using a
constant step size ?
What to submit: some commentary.
Page 6
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!