首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写COMPSCI369、代做Python编程设计
项目预算:
开发周期:
发布时间:
要求地区:
COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)
3
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!