首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP1212代写、代做Java/c++程序设计
项目预算:
开发周期:
发布时间:
要求地区:
School of Computing: assessment brief
Module title Computer Processors
Module code COMP1212
Assignment title Assignment 2: Encryption using a Feistel Cipher
Assignment type
and description
In-course assessment. Requires design, implementation
and testing of code written in assembly language
Rationale
Provides an opportunity to write assembly code including
understanding the implementation of branching and
functions and learn how a Feistel Cipher works for encryption.
Word
limit and
guidance
This coursework should take less than 15 hours to complete.
Weighting
60%
Submission deadline
10am
9/5/24
Submission
method
Gradescope
Feedback provision Feedback will be provided through Gradescope
Learning outcomes
assessed
Explain how high level programming constructs, such
as ’if’ statements and ’for’ loops, are implemented at a
machine level
Module lead Andy Bulpitt
Other Staff contact Noleen K¨ohler
11. Assignment guidance
The Feistel cipher is a symmetric block cipher encryption framework which is the basis
of many modern day encryption algorithms. In this coursework you will implement
a Feistel cipher system as a software implementation in Hack Assembly.
In a Feistel cipher the plaintext, P, to be encrypted is split into two equal size parts
L0 and R0 such that P = L0R0. A function F is applied to one half of the plaintext,
combined with a key, and the result is XOR’d with the other half of the plaintext.
Feistel ciphers often employ multiple rounds of this scheme. In general the scheme
works as follows, for all i = 0, . . . , n,
Li+1 = Ri
Ri+1 = Li ⊕ F(Ri
, Ki)
To decrypt an encrypted message using this cipher we can apply the same procedure
in reverse. For i = n, n − 1, . . . , 0,
Ri = Li+1
Li = Ri+1 ⊕ F(Li+1, Ki)
For this coursework we are interested in the 16-bit Feistel cipher which uses 4 rounds.
The function F(A, B) = A ⊕ ¬B.
The keys are derived from a single 8-bit key K0 such that,
K0 = b7b6b5b4b3b2b1b0
K1 = b6b5b4b3b2b1b0b7
K2 = b5b4b3b2b1b0b7b6
K3 = b4b3b2b1b0b7b6b5
2. Assessment tasks
(a) Write a program (XOR.asm) in HACK assembly that implements a bit-wise
XOR function between two 16-bit values stored in RAM[3] and RAM[4] and
stores the result in RAM[5].
[4 marks]
2(b) Write a program (Rotate.asm) in HACK assembly that implements an algorithm
to rotate the bits of a 16-bit number left (Least Significant bit (LSb) to Most
Significant bit (MSb)). The original number should be stored in RAM[3], the
number of times to rotate the bits should be in RAM[4] and the result stored in
RAM[5], i.e. 1010111100000000 rotated left 3 times would be 0111100000000101
where the MSb is used to replace the LSb on each rotation.
[8 marks]
(c) Write a program (FeistelEncryption.asm) in HACK assembly, that implements
the described Feistel encryption system. The initial key, K0, will be stored in
RAM[1], and the plaintext to be encrypted will be represented by a 16-bit value
stored in RAM[2]. The result of the encryption should be stored in RAM[0].
[10 marks]
[Total 22 marks]
3. General guidance and study support
Tools required to simulate the hardware and CPU are provided on Minerva under
Learning resources: Software. You may find it easier to implement cipher in a high
level language first. This will also allow you to test the results of your HACK program.
Support will be available during lab classes. Please ensure the files you upload work
with the test files provided and use the filenames provided in this sheet. Do not
alter the format of the lines of these test files in any way. The spacing in
each line needs to be preserved You are of course welcome to build your own
test files in the same format or add to these files.
4. Assessment criteria and marking process
This coursework will be automatically marked using Gradescope. Feedback will be
provided through Gradescope.
Marks are awarded for passing the automated tests on the submitted programs.
These will not necessarily be the same tests that are provided to help you develop
the solution. You should therefore test your solution thoroughly using other values
for the plaintext and keys before your final submission.
5. Presentation and referencing
Submitted code should provide suitable comments where possible.
6. Submission requirements
Links to submit your work can be found on Minerva under Assessment and feedback/Submit
my work. The HACK assembly (asm) files for each part must be uploaded
individually. Ensure you use only the filenames provided in this specification
sheet.
37. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential
academic skills, such as keeping track of where you find ideas and information and
referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression
of your own work and ideas and that you have given credit to others where their
work has contributed to yours.
8. Assessment/marking criteria
No marks will be awarded for tests which fail
• Part a) is graded using 4 tests, each worth 1 mark. [max 4 marks]
• Part b) is graded using 4 tests, each worth 2 marks. [max 8 marks]
• Part c) is graded using 4 tests, each worth 2 marks and a further 2 marks for
optimised solutions that require a lower number of operations to complete the
encryption [max 10 marks]
[Total 22 marks]
4
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!