首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写program、代做Python程序语言
项目预算:
开发周期:
发布时间:
要求地区:
Summative project
Computational Finance with Python
Table of contents
General information 1
Marking and credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Academic integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Submission instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Black-Scholes model 3
1.1 Historical volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Binomial tree approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Local volatility model 8
2.1 Option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
References 10
General information
Each student has a unique individualised assignment. Download your assignment directly from the submission point on Moodle.
1
Marking and credit
This project contributes 90% towards the final mark for the module.
The project will be marked anonymously. Do not include your name, student number or
any identifying details in your work.
In each exercise, marks are allocated for both coding (style, clarity and correctness) and
accuracy of numerical results, as well as explanations and written work (including comments and docstrings in the code). The marks indicated are indicative only.
Partial credit will be given for partial completion of an exercise, for example, if you are
able to do a Monte Carlo estimate with fewer paths or time steps.
It may prove impossible to examine projects containing code that does not run, or does
not allow data to be changed. In such cases a mark of 0 will be recorded. It is therefore
essential that all files are tested thoroughly in Colab before being submitted in Moodle.
Academic integrity
You may use and adapt any code submitted by yourself as part of this module, including
your own solutions to the exercises. You may use and adapt all Python code provided
in Moodle or on GitHub as part of this module, without the need for acknowledgement.
Any code not written by yourself must be acknowledged and referenced.
This is an individual project. You must not collaborate with anybody else or use code
that has not been provided in Moodle without acknowledgment. This includes, for example, discussing the questions with other students, actively using discussion forums or
using generative artificial intelligence (such as ChatGPT). Please consult the University’s
Student guidance on using AI and translation tools and Policy on Acceptable Assistance
with Assessment. Collusion and plagiarism detection software will be used to detect
academic misconduct, and suspected offences will be investigated.
Submission instructions
Submit your work by uploading it in Moodle by 4pm on 31 May. Work should be submitted as follows:
• Code (and numerical results) should be submitted in the form of Colab notebooks.
Code will be tested using unseen test data: use variables to store parameters rather
than values hard-wired into your code.
2
• Written text should be submitted in pdf format. Scans of handwritten text are acceptable, provided that they are legible.
• Use a separate set of files (ipynb and pdf, as appropriate) for parts 1 (Black-Scholes
model) and 2 (Local volatility model). “Part1.ipynb” or “part1.pdf” are examples of
sensible filenames.
Late submissions will incur a penalty according to the standard rules for late submission
of assessed work. It is advisable to allow enough time (at least one hour) to upload your
files to avoid possible congestion in Moodle. In the unlikely event of technical problems
in Moodle please email your files in a zip archive to alet.roux@york.ac.uk before the
deadline.
1 Black-Scholes model
Consider a risky asset with stock price S that follows geometric Brownian motion below
under the risk neutral measure Q, in other words,
dS_t = r S_t dt + \sigma S_t dW^Q_t
or, equivalently,
S_t = S_0e^{(r-\sigma ^2/2)t + \sigma W^Q_t},
where r is the risk free rate, \sigma is the volatility and W^Q is a standard Brownian motion
under Q.
The following code accesses data about a company Warner Bros. Discovery, Inc. using
Yahoo Finance.
import yfinance as yf 1
# create Ticker object which will allow data access
data = yf.Ticker('WBD')
# name of company
print("Name of company:", data.info['longName'])
# summary of company business
import textwrap 2
print("\n", textwrap.fill(data.info['longBusinessSummary'], 65))
3
1 See Arrousi (2024) for more details and usage instructions. This package is available
in Google Colab, but on local installations (such as Anaconda) it may need to be
installed before use—Arrousi (2024) provides instructions.
2 See The Python Software Foundation (2024) for more details on wrapping text.
Name of company: Warner Bros. Discovery, Inc.
Warner Bros. Discovery, Inc. operates as a media and
entertainment company worldwide. It operates through three
segments: Studios, Network, and DTC. The Studios segment produces
and releases feature films for initial exhibition in theaters;
produces and licenses television programs to its networks and
third parties and direct-to-consumer services; distributes films
and television programs to various third parties and internal
television; and offers streaming services and distribution
through the home entertainment market, themed experience
licensing, and interactive gaming. The Network segment comprises
domestic and international television networks. The DTC segment
offers premium pay-tv and streaming services. In addition, the
company offers portfolio of content, brands, and franchises
across television, film, streaming, and gaming under the Warner
Bros. Motion Picture Group, Warner Bros. Television Group, DC,
HBO, HBO Max, Max, Discovery Channel, discovery+, CNN, HGTV, Food
Network, TNT Sports, TBS, TLC, OWN, Warner Bros. Games, Batman,
Superman, Wonder Woman, Harry Potter, Looney Tunes, HannaBarbera, Game of Thrones, and The Lord of the Rings brands.
Further, it provides content through distribution platforms,
including linear network, free-to-air, and broadcast television;
authenticated GO applications, digital distribution arrangements,
content licensing arrangements, and direct-to-consumer
subscription products. Warner Bros. Discovery, Inc. was
incorporated in 2008 and is headquartered in New York, New York.
The following code downloads 6 months of daily prices and stores it in a NumPy array S.
# Download 6 months of price data (daily closing prices)
hist = data.history(period="6mo")
4
# Store closing prices in NumPy array S
import numpy as np
S = np.array(hist["Close"])
# Plot closing prices
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize = (8,6))
ax.set(title = f"Closing prices of {data.info['longName']}",
ylabel = "Price", xlabel = "Time step")
ax.xaxis.grid(True)
ax.yaxis.grid(True)
ax.plot(S)
plt.show()
5
1.1 Historical volatility
A popular way of calibrating the volatility \sigma is to estimate it from historical data. Suppose
that stock prices S_i (i=0,1,\ldots ,m ) have been recorded at some fixed time intervals of
length \tau >0 measured in years (for example, \tau =1/12 for monthly recorded stock prices).
The log returns on these prices over each time interval of length \tau are
R_i=\ln (S_i/S_{i-1})
for i=1,\ldots ,m . The sample variance of these returns is s^2 , where
s^2=\frac {1}{m-1}\sum _{i=1}^m\left (R_{i}-\overline {R}\right )^{2},
where \protect \overline {R} = \frac {1}{m}\sum _{i=1}^m R_{i}. The sample variance s^2 estimates the variance \sigma ^2\tau of the log return
on the stock price over a time interval of length \tau . It follows that
\hat {\sigma }_{\text {hist}}=\frac {s}{\sqrt {\tau }}
is an estimate for the volatility \sigma . This is called historical volatility.
Exercise 1.1 (Coding task: 10% of project mark). Write a function that calculates the historical volatility of a given set of stock prices. It should have two arguments: a NumPy array
of stock prices, as well as \tau , and return the estimate \protect \hat {\sigma }_{\text {hist}} .
Then use your code to calculate and display the historical volatility of the Warner
Bros. Discovery, Inc. stock prices. You should copy and paste the code given above into
your Colab notebook in order to download the data.
1.2 Binomial tree approximation
The continuous process S can be approximated by a binary tree. One approach is based
on the log price process x defined as
x_t = \ln S_t.
A binomial tree for x on the interval [0,T] can be built by taking \Delta t = T/M , where M is
the number of steps in the tree. The steps are at the equidistant times
t_i = i\Delta t \text { for } i=0,\ldots ,M,
and x^{(M)}_i is the relevant approximation of x_{t_i} .
6
Consider the binomial tree approximation of x in which, at any time t_i and over a small
time interval \Delta t, the approximation x^{(M)}_i of x_{t_i} can go up by \Delta x (the space step, to be
determined), or go down by \Delta x, with probabilities q and 1-q , respectively, i.e.
x^{(M)}_{i+1} = \begin {cases} x^{(M)}_i + \Delta x & \text {with probability } q \\ x^{(M)}_i - \Delta x & \text {with probability } 1-q. \end {cases}
The drift and volatility parameters of the continuous time process are now captured by
\Delta x and \Delta t, together with the parameters r and \sigma . We take x^{(M)}_0 = x_0 .
Exercise 1.2 (Binomial tree approximation: 25% of project mark). Design a binary tree
method that approximates the Black-Scholes model and can be used to price European
options. Your work should include the following:
1. Written work:
(a) Compute the conditional first and second moments of x_{t+\Delta t} - x_t in the
continuous-time model and x^{(M)}_{i+1}-x^{(M)}_i in the binomial tree model.
(b) Given the value of \Delta t, derive formulae for \Delta x and q in terms of r and \sigma by
matching the first and second moments of the continuous-time model and the
binomial tree model.
(c) State the algorithm used for pricing a European-style derivative security with
payoff at time T given by f(S_T) .
2. Write a Python function that uses the tree approximation to calculate the price at
time 0 of a European style derivative security with payoff at time T given by f(S_T) .
Your function should take the arguments S_0 , T, r, \sigma , M and f.
3. Use your code to price a derivative with payoff
f(S) = \begin {cases} S^{ 1.9 } & \text {if } S < K, \\ 0 & \text {otherwise}\end {cases}
and the following data:
• T = 0.5 .
• r = 0.03 .
• \sigma = \hat {\sigma }_{\text {hist}} as calculated for the Warner Bros. Discovery, Inc. data (use \sigma =0.3 if
you were not able to calculate \protect \hat {\sigma }_{\text {hist}} ).
• S_0 as the final item in the array of Warner Bros. Discovery, Inc. data.
• M = 180 .
• K = S_0 .
7
2 Local volatility model
A model for a stock S is given by the stochastic differential equation
\phantomsection \label {eq-local-vol-model}{dS_t = r S_t dt + \sigma (t, S_t) S_t dW_t^Q,} (1)
where r is the risk-free interest rate and W^Q is a Brownian motion under the risk-neutral
probability Q. The function \sigma is defined as
\sigma (t,S) = 0.25 e^{ -0.03 t} \left (\frac { 105 }{S}\right )^{ 0.4 }.
The aim of this part of the project is to use Monte Carlo and finite difference techniques to
study a European style derivative where the payoff at time T=1 is
X = \begin {cases} (S_T - 110)^+ & \text {if } S_t \ge 100 \text { for all } t\in [0,T], \\ 0 & \text {otherwise.} \end {cases}
Take S_0=£105 and r=0.05 .
2.1 Option pricing
The aim in this section is to approximate the price of the put option at time 0 for a range
of stock price values.
2.1.1 Monte Carlo method
Exercise 2.1 (Monte Carlo estimate: 30% of project mark). Implement Monte Carlo simulation to estimate the price of this derivative at time 0 under Q. Use the Euler method, and
antithetic variates to reduce the variance of the estimate.
Your work should include a statement of the Monte Carlo algorithm that you are using.
Report the Monte Carlo estimate of the price, the standard error and an approximate 95%
confidence interval with 10000 paths and 20000 steps per path.
Hint: To reduce the discretization error, apply the Euler method to the process Y defined
as Y_t=\ln S_t instead of to S directly. Use the Itô formula to derive a stochastic differential
equation for Y.
8
2.1.2 Finite difference methods
The price of a path-independent option at time t can be expressed as V(t,S_t) , where the
function V satisfies the partial differential equation
\phantomsection \label {eq-local-vol-pde}{\frac {\partial V}{\partial t}(t,S) + r S \frac {\partial V}{\partial S}(t,S) + \tfrac {1}{2}\sigma ^2(t,S)S^2\frac {\partial ^2 V}{\partial S^2}(t,S) - rV(t,S) = 0} (2)
for all t\in [0,T) and S>0 , together with boundary condition
V(t, 100) = 0
and final value
V(T, S) = \begin {cases} (S - 110)^+ & \text {if } S \ge 100, \\ 0 & \text {otherwise}. \end {cases}
Exercise 2.2 (Backward Euler method: 25% of project mark). Design an implicit (backward Euler) finite difference scheme to approximate the solution to the partial differential
equation in Equation 2. Your work should include the following:
1. Convert the final value problem into an initial value problem, and define a suitable
grid that contains the points (0,100) and (0,S_0) .
2. Propose an appropriate boundary condition for S\rightarrow \infty .
3. Derive the iterative scheme in matrix form that would allow you to approximate
the value of V at the grid points. Give the lower diagonal, main diagonal and upper
diagonal elements of the matrix.
4. Write a Python function to implement the iterative scheme. Your function should
have suitable arguments and return values.
5. Compare your results to the Monte Carlo estimate. Is it possible to choose values
for the step sizes that result in the price V(0,S_0) being within the confidence interval
produced by the Monte Carlo method?
6. Report numerical results in an appropriate way, for example, via a 3d surface representing option prices for all t\in [0,T] and a 2d graph representing option prices at
time t=0 , all for a range of S.
2.2 Theta
Exercise 2.3 (Theta: 10% of project mark). Approximate the value of the theta \Theta = \frac {\partial V}{\partial \tau } at
all the grid points used for the finite difference approximation in Exercise 2.2. Your work
should include the following:
9
1. Design a suitable algorithm for approximating the theta, paying special attention to
the boundary points. It is not necessary to repeat any information already provided
in Exercise 2.2.
2. Implement the algorithm in Python.
3. Report numerical results appropriately, for example, via a 3d surface representing
the value of theta at all grid points.
References
Arrousi, Ran. 2024. “Download Market Data from Yahoo! Finance’s API.” https://github
.com/ranaroussi/yfinance.
The Python Software Foundation. 2024. “textwrap: Text Wrapping and Filling.” https:
//docs.python.org/3/library/textwrap.html.
10
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!