首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写ECS 116、代做SQL设计编程
项目预算:
开发周期:
发布时间:
要求地区:
ECS 116 Databases for Non-Majors / Data Management for Data Science
Programming Assignment 1
A. Prelude
1. The assignment is of 25 points.
2. Last date of submission is April 28, Sunday @ 11:59 pm.
3. Late submissions will be graded according to the late policy. Specifically, 10% of grade is deducted if you are
up to 24 hours late, 20% is deducted if you are 24 to 48 hours late, and no credit if turned in after 48 hours.
4. This assignment will be solo.
5. Create a new sql file for each step namely (Step 2, Step 3, Step 4) if you have to use sql commands through
DBeaver.
6. Your assignment will be graded based on correctness (passing all tests), ingenuity and originality.
7. All the required files (csv) can be found under Files in Canvas.
8. Plagiarism is strictly prohibited. You’re free to discuss high-level concepts amongst your peers. However,
cheating will result in no points on the assignment and reporting to OSSJA.
B. Step 1: Uploading africa fs after cleaning db.csv into PostgreSQL
1. In DBeaver create a new database faostat. Set that as the default database
2. Create a schema food sec (or “food sec v01”) in your database faostat. Set that as default schema.
3. Do set search path to food sec;
4. Load the file africa fs after cleaning db.csv into the schema food sec to make table africa fs ac.
5. Modify the data types of some of the columns of africa fs ac as follows:
area code m49: varchar(3)
element code: varchar(4)
year code: varchar(8)
value: numeric
After making these changes, click on “Save” at bottom of pane.
6. Check whether the values for value column have been imported correctly.
Do a selection query to get distinct values that are ≤ 2.
Using Excel see what are the values ≤ 2.
Do these match?
7. Do an SQL query to DELETE all tuples from africa fs ac (it will ask you to confirm that you want to do this
delete).
8. Use DBeaver to import the file africa fs after cleaning db.csv (don’t use the SQL “COPY” command
because it complains about a data type encoding issue).
Do a sanity check that the number of tuples in your table is same as in csv file.
Again check on the values in column value.
1
C. Step 2: Build Table gdp stunting overweight anemia
1. Similar to the construction of gdp stunting overweight shown in the 2024-04-09 lecture and the SQL script
faostat-part 02-transforming africa fs.sql, use DBeaver and SQL commands to build a table
gdp stunting overweight anemia which has, for each country-year pair the following associated values for:
GDP per capita Purchasing Power Parity (22013): use column name gdp p ppp.
Percentage of children over 5 years of age who are stunted (21025): . childhood stunting
Percentage of children over 5 years of age who are overweight (21043): childhood overweight.
Prevalence of anemia among women of reproductive age: anemia
2. Add this table into your schema food sec.
Figure 1: Almost correct example of the table gdp stunting overweight anemia. Your table should have 3 characters
for area code m49 column, and may have some decimal values for the last 4 columns.
D. Step 3: Build table energy undernourished
1. Note that many records in africa fs ac have year and year code values based on 3-year intervals rather than
single years. We will use some of this data to gain more insight about countries. In particular, we will interpret
a 3-year interval as applying to the year in the middle, e.g., we will interpret 2000-2002 as applying to the year
2001.
2. First, build a table energy undernourished which has, for each country-year code pair the associated values
for:
Average dietary energy supply adequacy (21010): use column name dietary energy.
Prevalence of undernourishment (210041): use column name undernourished.
Note: this table should have 1040 rows in it.
3. Now add a column derived year to the table energy undernourished, where for each tuple, the derived year
value is computed by using the year in the middle of the first and third years in the year code of the tuple.
4. The column you added probably has data type integer. Convert this to varchar(4).
2
Figure 2: Almost correct example of the table energy undernourished. As with Figure 1, the area code m49 column
should have 3 characters, and the values for last 3 columns may have decimal values.
E. Step 4: Joining the gdp stunting overweight anemia and
energy undernourished tables to create new
table gdp energy with fs indicators
1. Create a selection query that combines the table gdp stunting overweight anemia and energy undernourished
to form a new table gdp energy with fs indicators
The columns should include area code m49, area, year code, gdp pc ppp, dietary energy, childhood stunting,
childhood overweight, anemia and undernourished.
Tuples in this table should be formed by combining tuples from gdp stunting overweight anemia and
energy undernourished where year code from the first table equals derived year of the second table.
Note: your table should have 895 tuples in it.
2. Export the table gdp energy with fs indicators as a csv file gdp energy with fs indicators.csv.
3. Sort this csv file by area (country name) and then year code.
4. CONGRATULATIONS: you have created a table that we can use later to determine whether there are sta?tistical correlations between gdp per capita and/or stunting, childhood overweight, anemia in women and/or
undernourishment.
Figure 3: Example of the table gdp energy with fs indicators
5. Create a new table gdp energy fs aggs.
Which has columns as:
– area code m49
– area
– avg gdp pc ppp
– avg dietary energy
3
– avg childhood stunting
– avg childhood overweight
– avg anemia
– avg undernourished
The “avg” columns should hold the averages of the corresponding items for each country, over all of the
years of available data.
Use the round operator on the “avg” value, so that they have type numeric and are rounded to 2 decimal
points. Use the following kind of expression: round(< expression for average >::numeric, 2).
6. Export the table gdp energy fs aggs as a csv file gdp energy fs aggs.csv.
7. Sort the csv file by area (i.e., country name).
Figure 4: Almost correct example of the table gdp energy fs aggs. You will obtain slightly different values. This
table was computed with rounded values for various columns, rather than with values having decimals.
F. Submission
1. Please make a single zip file that includes
gdp energy with fs indicators.csv
gdp energy fs aggs.csv
The DBeaver sql scripts that you used to create these 2 csv files, specifically, Step 2.sql, Step 3.sql,
Step 4.sql).
Name the zip file as FirstName LastName LastFourDigitsOfStudentID ECS116 A1.
2. Upload it on Canvas for Assignment 1 (This is a solo assignment so don’t add your peers to your submission).
4
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!