首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写CS 6476、代做Python/Java程序
项目预算:
开发周期:
发布时间:
要求地区:
GEORGIA TECH’S CS 6476 COMPUTER VISION
Final Project : Classification and Detection with
Convolutional Neural Networks
April 1, 2023
PROJECT DESCRIPTION AND INSTRUCTIONS
Description
For this topic you will design a digit detection and recognition system which takes in a single
image and returns any sequence of digits visible in that image. For example, if the input image
contains a home address 123 Main Street, you algorithm should return “123”. One step in your
processing pipeline must be a Convolutional Neural Network (CNN) implemented in TensorFlow or PyTorch . If you choose this topic, you will need to perform additional research about
CNNs. Note that the sequences of numbers may have varying scales, orientations, and fonts,
and may be arbitrarily positioned in a noisy image.
Sample Dataset: http://ufldl.stanford.edu/housenumbers/
Related Lectures (not exhaustive): 8A-8C, 9A-9B
Problem Overview
Methods to be used: Implement a Convolutional Neural Network-based method that is capable of detecting and recognizing any sequence of digits visible in an image.
RULES:
• Don’t use external libraries for core functionality You may use TensorFlow, keras and Pytorch and are even required to use pretrained models as part of your pipeline.
• However, you will receive a low score if the main functionality of your code is provided
via an external library.
• Don’t copy code from the internet The course honor code is still in effect during the final
project. All of the code you submit must be your own. You may consult tutorials for
libraries you are unfamiliar with, but your final project submission must be your own
work.
1
• Don’t use pre-trained machine learning pipelines If you choose a topic that requires the
use of machine learning techniques, you are expected to do your own training. Downloading and submitting a pre-trained models that does all the work is not acceptable for
this assignment. For the section on reusing pre-trained weights you expected to use a
network trained for another classification task and re-train it for this one.
• Don’t rely on a single source We want to see that you performed research on your chosen topic and incorporated ideas from multiple sources in your final results. Your project
must not be based on a single research paper and definitely must not be based on a single
online tutorial.
Please do not use absolute paths in your submission code. All paths must be relative
to the submission directory. Any submissions with absolute paths are in danger of receiving a penalty!
Starter Code
There is no starter code for this project
Programming Instructions
In order to work with Convolutional Neural Networks we are providing a conda environment
description with the versions of the libraries that the TA will use in the grading environment
in canvas->files->Project files. This environment includes PyTorch, Tensorflow, Scikit-learn,
and SciPy. You may use any of these. It is your responsibility to use versions of libraries that
are compatible with those in the environment. It is also up to you to organize your files and
determine the code’s structure. The only requirement is that the grader must only run one
file to get your results. This, however, does not prevent the use of helper files linked to this
main script. The grader will not open and run multiple files. Include a README.md file with
usage instructions that are clear for the grader to run your code.
Write-up Instructions
The report must be a PDF of 4-6 pages including images and references. Not following this
requirement will incur a significant penalty and the content will be graded only up to page 6.
Note that the report will be graded subject to a working code. There will be no report templates
provided with the project materials.
The report must contain:
You report must be written to show your work and demonstrate a deep understanding of your
chosen topic. The discussion in your report must be technical and quantitative wherever possible.
• A clear and concise description of the algorithms you implemented. This description
must include references to recently published computer vision research and show a deep
understanding of your chosen topic.
• Results from applying your algorithm to images or video. Both positive and negative results must be shown in the report and you must explain why your algorithm works on
some images, but not others.
2
How to Submit
Similar to the class assignments, you will submit the code and the report to Gradescope (note:
there will be no autograder part). Find the appropriate project and make your submission into
the correct project. Important: Submissions sent to Email, Piazza or anything that is not
Gradescope will not be graded.
Grading
The report will be graded following the scheme below:
• Code (30%): We will verify that the methods and rules indicated above have been followed.
• Report (70%): Subject to a working code.
• Description of existing methods published in recent computer vision research.
• Description of the method you implemented.
• Results obtained from applying your algorithms to images or videos.
• Analysis on why your method works on some images and not on others. (with images)
• References and citations.
ASSIGNMENT OVERVIEW
This project requires you to research how Convolutional Neural Networks work and their application to number detection and recognition. This is not to be a replica of a tutorial found
online. Keep in mind this content is not widely covered in this course lectures and resources.
The main objective of this assignment is to demonstrate your understanding of how these tools
work. We allow you to use a very powerful training framework that helps you to avoid many of
the time-consuming implementation details because the emphasis of this project will be on
the robustness of your implementation and in-depth understanding of the tools you are using.
Installation and Compatibility
The provided environment yml description gives you with the versions of the libraries the TA’s
will during grading. We recommend you use conda to install the environment. Make sure the
forward pass of your pipeline runs in a reasonable amount of time when using only a CPU as
some TA’s do not have a GPU.
OS Warning:
Be warned that TA’s may grade on linux, Windows or Mac machines. Thus, it is your responsibility to make sure that your code is platform independent. This is particularly important when
using paths to files. If your code doesn’t run during grading due to some incompatibility you
will incur a penalty.
Classifier Requirements
Your classification pipeline must be robust in the following ways:
1. Scale Invariance:
3
The scale of the sequence of numbers in an image in vary.
2. Location Invariance:
The location of the sequence of numbers in the image may vary.
3. Font Invariance:
You are expected to detect numbers despite their fonts.
4. Pose Invariance:
The sequence of numbers can be at any angle with respect to the frame of the image.
5. Lighting Invariance:
We expect robustness to the lighting conditions in which the image was taken.
6. Noise Invariance:
Make sure that your pipeline is able to handle gaussian noise in the image.
Pipeline Overview:
The final pipeline should incorporate the following preprocessing and classification components. We expect you to clearly explain in your report what you did at each stage and why.
Preprocessing
Your pipeline should start from receiving an image like this:
Notice that this is not the type of image your classification network trained on. You will have to
do some preprocessing to correctly detect the number sequence in this image.
In the preprocessing stage your algorithm should take as input an image like the one above and
return region of interest. Those ROI will be regions in the image where there is a digit. In order
to perform this preprocessing step you can use the MSER and/or sliding window algorithm with
image pyramid approach. (see https://docs.opencv.org/4.1.0/d3/d28/classcv_1_1MSER.html)
Note: The region proposal stage has to be separated from the classification stage. For this
project we will use MSER and/or sliding window to detect the ROI. This means that one-stage
approaches (detection + classification) such as YOLO are not allowed.
4
Noise Management
We expect to see you handle gaussian noise and varying lighting conditions in the image. Please
explain what you do in order to handle these types of perturbations and still have your classifier
work.
Location Invariance
Since you don’t know where the numbers will appear on the image you will have to search for
them using a sliding window method.
Scale Invariance
Make sure to implement an image pyramid with non-maxima suppression to detect numbers
at any scale.
Performance Considerations
Running your full classifier through a sliding window can be very expensive. Did you do anything to mitigate forward pass runtime?
Classification
This section is concerned with the implementation of a number classifier based on the sample
dataset.
Model Variation
There are several approaches to implementing a classifier and we want you get exposure to all
of them:
1. Make your own architecture and train it from scratch.
(https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html) (without pre-trained weights).
2. Use a VGG 16 implementation and train it with pre-trained weights.
(Note: Final Linear layer will have 11 classes,
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html(finetuning-the-convnet)
Make sure you mention in your report what changes you made to the VGG16 model in order to
use it for your particular classification task. What weights did you reuse and why? Did you train
over the pre-trained weights?
Training Variation
We want you to have some familiarity with stochastic gradient descent. For this reason we
want you to explain your choice of loss function during training. We also want an explanation
for your choice of batch size and learning rate. In the report we expect a definition of these
parameters and an explanation of why you chose the numbers you did. We also want to see
5
how you decided to stop the training procedure.
Evaluating Performance
In order to evaluate the performance of your learning model we expect you to include training curves with validation, training and test set errors. When you compare the performance of
each model we also want you include tables with the test set performance of the each model.
We want to see a discussion of your performance in each of the models outlined above and we
want to see empirical data demonstrating which is better. Your final pipeline should use the
model and training that empirically demonstrates better performance.
FINAL RESULTS
Image Classification Results
During grading, TAs expect to be able to run a python 3 file named run.py that writes five images to a graded_images folder in the current directory. The images should be named 1.png,
2.png, 3.png, 4.png and 5.png.
You can pick these images; however, across the five of them we will be checking that you
demonstrate following:
1. Correct classification at different scales
2. Correct classification at different orientations
3. Correct classification at different locations within the image.
4. Correct classification with different lighting conditions.
Notice, that since we allow you to pick the images, we expect good results.
In addition, add extra images showing failure cases of your implementation in the report. Analyse and comment why your algorithm is failing on those images.
6
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!