首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做program、代写Java/Python程序语言
项目预算:
开发周期:
发布时间:
要求地区:
Impact of Urban Transportation Networks on Air Quality in New York City
1
Research Proposal: Impact of Urban Transportation Networks
on Air Quality in New York City
1. Introduction:
Background: Urban transportation networks significantly influence air quality in cities. In NewYork City, the extensive public transportation system, including subways, buses, and taxis, contributes to varying levels of air pollution across different areas. Purpose: To analyze how different components of New York City's urban transportation networkaffect air quality in various neighborhoods. 2. Research Hypotheses:
Hypothesis 1: There is a significant correlation between the density of public transportation nodes
(subway stations, bus stops) and the level of air pollutants in surrounding areas. Hypothesis 2: Areas with higher traffic congestion exhibit higher levels of certain air pollutants. 3. Data Sources:
(1)Urban Transportation Data: Data on public transportation networks, traffic patterns, and congestion levels. NYC Open Data: This platform offers a wide range of datasets published by NewYork Cityagencies and other partners, including transportation and environmental data. It can explore
various datasets related to transportation networks, traffic patterns, and more
(https://opendata.cityofnewyork.us/). MTA Open Data Program: Managed by the Data & Analytics team of the MetropolitanTransportation Authority, this program aggregates diverse data sources fromthe MTA, including subway and bus service performance metrics, which can be vital for analysis of
transportation networks (https://new.mta.info/). NYC Transportation Data - CSI Library at CUNY College of Staten Island Library:
This resource provides access to a range of transportation data sources, including MTAsubway and bus ridership statistics, bicycle traffic data, and transportation trends
(https://library.csi.cuny.edu/). Subway Data NYC: A comprehensive dataset of train arrival times for the NewYork Citysubway, updated daily. This dataset includes information on stations and stop times, whichcan be used to analyze the density and frequency of subway services in different areas of the
city (https://transitdata.nyc/). (2)Air Quality Data: Pollution measurements, including particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), and other relevant pollutants. New York City Community Air Survey (NYCCAS): provides detailed information on air
quality across different neighborhoods in the city. It includes data on pollutants like
particulate matter (PM2.5), nitrogen dioxide (NO2), and others. (https://www.nyc.gov/site/doh/data/data-sets/air-quality-nyc-community-air-survey.page)
NYC Environment & Health Data Portal: This portal offers real-time and historical air
quality data for New York City. It includes measurements of PM2.5 and other pollutants, withdata available in various formats such as JSON and CSV. This resource can be particularly
useful for analyzing temporal variations and identifying pollution
Impact of Urban Transportation Networks on Air Quality in New York City
2
hotspots.(https://a816-dohbesp.nyc.gov/IndicatorPublic/key-topics/airquality/realtime/)&(https://a816-doh
besp.nyc.gov/IndicatorPublic/data-explorer/air-quality/?id=92#display=summary)
NYCCAS Methods and Pollutant Maps: This resource provides the methodologies used
for air quality monitoring in NYC. It includes details on how air samples are collected and
how the data is used to build land-use regression models to estimate air pollution levels
across the city.(https://nyccas.cityofnewyork.us/nyccas2022/report/3)
4. Analytical Methods:
Time Series Analysis: Use time series analysis to study the historical trends in air qualitydata and transportation network changes over time in NYC. Implement models to predict
future trends based on these historical data. Dimensionality Reduction (Linear and Kernel PCA): Apply both linear and nonlinear
PCA to reduce the complexity of large datasets related to air quality and transportationnetworks. This will help in identifying the most significant variables affecting air quality. Random Forest (Non-linear model): Utilize random forest models to analyze the complexrelationships between multiple variables, such as traffic density, types of vehicles, and air
pollutant levels. Big Data Analytics Tools (Dask, MapReduce, Multiprocessing): Leverage these tools for
efficient processing and analysis of large datasets, especially useful for handling extensive air
quality and transportation data. Network Analysis (Node Centrality, Routing, Community Detection, NetworkModeling): Analyze the transportation network using network analysis techniques. Identifykey nodes (like major intersections or transit hubs) that significantly impact traffic flowand, consequently, air quality. Bayesian Inference: Apply Bayesian inference methods to estimate the probabilities of
certain air quality outcomes based on different transportation scenarios. This can be
particularly useful in understanding the impact of urban transportation policies. 5、Anticipated Conclusions:
A significant relationship is expected between the density of urban transportation networks
and the levels of air pollutants in New York City. Areas with higher traffic congestion are likely to exhibit elevated levels of air pollutants. 6、Limitations of the Study:
The study may encounter limitations due to potential biases in the urban data sources and the
complex nature of environmental factors in New York City. The primary methodologies, including time series analysis and network analysis, might not
capture all nuances of the urban-environment interaction. 7、Recommendations for Future Research:
Future research should explore comparisons with other major cities to understand the uniqueness
or commonality of NYC’s situation. Investigating the specific impacts of various types of
transportation, on air quality could provide deeper insights.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!