首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做Web开发|代写Python编程|代写Python程序|代写Python程序
项目预算:
开发周期:
发布时间:
要求地区:
numerical-methods-montecarlointegrati
on-exercise
In this exercise, you should implement classes that provide a reasonably flexible framework for Monte-Carlo integration.
The framework should be flexible enough to allow
• integration of different functions f : Rn → R
• flexible specification of the integration domains using a transformation from
[0,1]n to a subset of Rn
• flexible use for different random number generators
For convenience, we provide the interfaces that define the framework. You can find these interfaces in the package
info.quantlab.numericalmethods.lecture.montecarlo.integration
Interfaces (provided)
• Integrand
• IntegrationDomain
• Integrator
• MonteCarloIntegratorFactory
The MonteCarloIntegratorFactory's method requires a class implementing
a RandomNumberGenerator. This interface and some classes implementing this interface can
be found in the package
info.quantlab.numericalmethods.lecture.randomnumbers
Integrand and IntegrationDomain
• Objects implementing Integrand provide a function f : A \rightarrow R defined on a domain A.
• Objects implementing IntegrationDomain provide a bijective function g : [0,1]^{n} \rightarrow A that transforms the integration domain and the determinant of the derivative (Jacobi matrix) dg/dx.
• Objects implementing Integrator provide the integral \int_A f(z) dz using substitution z = f(x).
Classes
You may use the classes providing random number generators that will be or were developed during the lecture, e.g.,
• RandomNumberGeneratorFrom1D • MersenneTwister
Task
The exercise consists of two separate tasks.
Task 1: A MonteCarloIntegrator
To complete your task:
•
•
•
i. Implement a class implementing the interface Integrator that performs a general Monte-Carlo integration of arbitrary functions on general domains.
The function to integrate will be provided to the integrator's method integrate as an object implementing the interface Integrand.
The integration domain will be provided to the integrator's method integrate as an object implementing the interface IntegrationDomain.
ii. Implement a class implementing the interface MonteCarloIntegratorFactory that allows creating an object of the class that you have implemented in 1). Note: the MonteCarloIntegratorFactory simply calls the constructor of your class.
ii. To allow us to test you implementation, complete the implementation of the
method getMonteCarloIntegratorFactory of MonteCarloIntegrationAssignmentSolutio
n. This allows the creation of an object of your MonteCarloIntegratorFactory. Our unit tests will use this to test your code.
•
ii. Feel free to create your own UnitTests and JavaDoc documentation.
final long seed = 3141;
RandomNumberGenerator randomNumberGenerator = new RandomNumberGeneratorFrom1D(new MersenneTwister(seed), domain.getDimension());
Suggestion: you may test your integrator with different random number generators, e.g. MersenneTwister via
or a HaltonSequence.
Task 2: Using your MonteCarloIntegrator to calculate the integral of a DoubleBinaryFunction
•
v. Complete the method getIntegral of MonteCarloIntegrationAssignmentSolution. Use your Monte-Carlo integrator with approximately 1 million sample points to calculate the integral.
Tasks 3: Implement a SimpsonsIntegrator for the general Simpson's rule in d dimension
To complete your task:
•
•
vi. Implement a class implementing the interface Integrator that performs a general (composite) Simpson's rule integration in d dimension of arbitrary functions on
general domains.
The function to integrate will be provided to the integrator's method integrate as an object implementing the interface Integrand.
The integration domain will be provided to the integrator's method integrate as an object implementing the interface IntegrationDomain.
vii. Implement a class implementing the interface IntegratorFactory that allows creating an object of the class that you have implemented in 1). Note:
the IntegratorFactory simply calls the constructor of your class.
•
•
Hints
vii. To allow us to test you implementation, complete the implementation of the
method getSimpsonsIntegratorFactory of MonteCarloIntegrationAssignment. This allows the creation of an object of your IntegratorFactory. Our unit tests will use this to test your code.
vii. Feel free to create your own UnitTests and JavaDoc documentation.
• Note that your Simpsons integral and your Monte-Carlo integral only operator on [0,1]^d (the object implementing the Domain will provide you with the transformation).
• Your Simpsons integrator should accept the numberOfValuationPoints as an argument. This should be the minimum total number of valuation points. Since the Simpsons rule uses an odd number of points in every dimension, you may use the following code to round this number appropriately
to numberOfSamplePointsEffective, using numberOfSamplePointsPerDimension per dimension.
int dimension = integrationDomain.getDimension();
int numberOfValuationPointsPerDimension = 2 * (int) (Math.ceil(Math.pow(numberOfValuationPoints, 1.0/dimension))/2) + 1;
int numberOfValuationPointsEffective = (int) Math.pow(numberOfValuationPointsPerDimension, dimension);
• You might realise that you need to think a bit to find a short algorithm to implement the Simpsons integration in arbitrary dimensions. It is possible to create a fairly short implementation if you implement a multi-index index - an array of length dimension where
each entry runs from 0 to numberOfSamplePointsPerDimension-1.
Unit Tests
We encourage you to write your own unit tests.
Further Research
This project offers the opportunity to explore Monte-Carlo integration in more detail for those interested. Here are a few suggestions:
• Explore the dependency on the dimension: Consider the integration of x → product(i=0,...,d-1) sin(xi) for 0 < xi < π. The value of the integral is 2^d. This is an d-dimensional integral. For this function, compare the accuracy of Monte-Carlo integration and Simpsons integration with d = 1, 2, 4, 8 using for example n =
5^8 = 390625 sample points.
• Explore the dependency on the smoothness of the function: Consider the integration of (x0,x1) → x02 + x12 < 1.0 ? 1.0 : 0.0 for 0 < xi < 1. The analytic value of this integral π. For this function, compare the accuracy of Monte-Carlo integration and Simpsons integration using n = 101^2 = 10201 sample points.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!