首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP2003J代写、代做Python/Java编程语言
项目预算:
开发周期:
发布时间:
要求地区:
Assignment 1: AVL & Splay Trees
COMP2003J: Data Structures and Algorithms 2
Weight: 10% of final grade
Document Version: 1.0
Introduction
This assignment is intended to give you experience implementing AVL and
Splay trees. It is also a good exercise to gain experience about how generics,
inheritance and object references work in Java.
Source code that you can start from has been posted to BrightSpace in the file
Assignment1-Source.zip. This also contains the Javadoc API documentation for
the classes that have been provided (in the “doc” folder). Import this project into
Eclipse in the usual way.
Tasks
The main tasks for this assignment are:
• Implement the key methods for an AVL Tree.
• Implement the key methods for a Splay Tree.
• Develop a strategy to test if your implementations are correct.
Implementation of AVL Tree Methods
The source code contains a partial implementation of an AVL Tree in a file
called AVLTree.java in the dsa.impl package. Your work in this section must be
in this class and it must use the interfaces that are provided.
You must implement the following methods:
• public void insert( T value ) – insert a value into the AVL tree.
• public void remove( T value ) – remove a value from the AVL tree.
• public boolean contains(T value) – check to see if a value is contained in
the AVL tree. Returns true if the value is in the tree, or false if not.
• private void restructure( IPosition
x ) – trinode restructuring (the three
nodes are x, its parent and its grandparent).
If you wish, you may create other methods that help you to complete the task
(e.g. rightRotate(IPosition
n), leftRotate(IPosition
n), etc.).
Some hints and tips:
- Remember your AVLTree extends several other classes, so you can
use some of their helpful methods (e.g. expandExternal(…)).
- The expandExternal(…) method uses newPosition(…) to create all
position objects, so all the positions in the tree will be AVLPosition
instances.
- You can cast an IPosition
to an AVLPosition in the same way as you
did in previous worksheets.
- Remember every parent/child relationship works in two directions.
Every time you change one of these references, you must change both.
- In the lectures we talk about attaching subtrees. BUT when we program
this, we notice that the subtree structure does not change at all. We just
need to put the root of the subtree in the right place.
- An AVLPosition object has a height attribute. You will need to efficiently
calculate the height of the positions in the tree when the tree changes.
Calculating the heights of all positions every time the tree changes will
be at best O(n). An efficient implementation would be at worst O(h) when
an insert(…) or remove(…) operation is called.
- The TreePrinter class has been provided, so you can print the contents
of your tree and see what it contains.
Implementation of Splay Tree Methods
The source code contains a partial implementation of a Splay Tree in a file
called SplayTree.java in the dsa.impl package. Your work in this section must be
in this class and it must use the interfaces that are provided.
You must implement the following methods:
• private void splay( IPosition
p ) – splay a position in the tree.
• public void insert( T value ) – insert a value into the splay tree.
• public void remove( T value ) – remove a value from the splay tree.
• public boolean contains( T value ) – check to see if a value is contained
in the splay tree. Returns true if the value is in the tree, or false if not.
Remember, this method also causes a splay(…) operation.
Testing the Tree Implementations
It is important to check whether your implementations are correct. A good way
to do this is to use your tree to perform some operations, and then check if the
outcome is correct. This is best done using a program, rather than doing it
manually every time.
An example is given in the AVLTreeStructureTest class in the dsa.example
package. This performs some operations (only insert) on an AVL tree. To check
if the final AVL tree is correct, it compares it with a Binary Search Tree that has
the final expected shape (I worked this out manually).
Another example is shown in the AVLTreeSpeedTest class. This performs several
operations on an AVL Tree and measures how quickly it runs. This is a good
way to test the efficiency of your implementation.
Create some test classes for your implementation (called Test1, Test2, etc.).
You can follow these examples or have your own ideas.
In your tests, you should test all the different types of restructuring that are
possible (e.g. for a Splay Tree they should cause zig, zig-zig and zig-zag splays
to both sides, and at the root and deeper in the tree).
Each test class must have a comment to explain the purpose of the test and
what the outcome was.
Submission
• This is an individual programming assignment. Therefore, all code
must be written by yourself. There is some advice below about avoiding
plagiarism in programming assignments.
• All code should be well-formatted and well-commented to describe what
it is trying to do.
• If you write code outside the SplayTree.java, AVLTree.java and test files
(Test1.java, Test2.java, etc.), it will not be noticed when grading. Write
code only in these files.
• Submit a single .zip file to Brightspace.
o This should Include only the files you have written code in. It is
not necessary to submit your entire Eclipse project.
Assignment 1 Grading Rubric
This document shows the grading guidelines for Assignment 1 (implementation of AVL
Trees and Splay Trees). Below are the main criteria that will be applied for the major grades
(A, B, C, etc.). Other aspects will also be taken into account to decide minor grades (i.e.
the difference between B+, B, B-, etc.).
- Readability and organisation of code (including use of appropriate functions,
variable names, helpful comments, etc.).
- Quality of solution (including code efficiency, minor bugs, etc.).
Passing Grades
D Grade
Good implementation of an AVL Tree or Splay Tree, plus some basic testing.
A "good" implementation is one where all the key methods work correctly in the vast
majority of cases (i.e. some occasional bugs will be tolerated).
C Grade
Good implementation of an AVL Tree and a Splay Tree, plus some basic testing of both;
OR
Good implementation of an AVL Tree or a Splay Tree, plus comprehensive testing of the
tree in question.
"Comprehensive" testing should make sure that the different operations of the tree(s) are
all tested (e.g. for a Splay Tree "Zig" operation, it would check both situations where the
node is a left child and where the node is a right child. For a "Zig-Zig" operation, this
should also be tested for both sides, as well as being tested where the splay operation
happens at the root and where it happens deeper in the tree).
B Grade
Excellent implementation of an AVL Tree and a Splay Tree, plus comprehensive testing
of both; OR
Excellent implementation of an AVL Tree and a Splay Tree, with some basic testing and
an efficient approach to height calculation for AVL trees.
A Grade
Excellent implementations of AVL Tree and Splay Tree, with comprehensive testing of
both and an efficient approach to height calculation in AVL Trees.
Failing Grades
ABS/NM Grade
No submission received/no relevant work attempted.
G Grade
Code does not compile; OR
Little or no evidence of meaningful work attempted.
F Grade
Some evidence of work attempted, but few (if any) methods operate in the correct
manner.
E Grade
AVL Tree and/or Splay Tree have been attempted, but there are too many
implementation errors for the implementation to be useful in practice.
Plagiarism in Programming Assignments
• This is an individual assignment, not a group assignment.
• This means that you must submit your own work only.
If you submit somebody else's work and pretend that you wrote it, this
is plagiarism.
• Plagiarism is a very serious academic offence.
Why should you not plagiarise?
• You don't learn anything!
• It is unfair to other students who work hard to write their own solutions.
• It's cheating! There are very serious punishments for students who
plagiarise. The UCD policy on plagiarism can be found online1.
- A student found to have plagiarised can be exclude from their
programme and not allowed to graduate.
Asking for Help
If you find things difficult, help is available.
• TAs are available during lab times.
• You can post questions in the Brightspace discussion forum or our
Wechat group.
• You can email the head TA (dairui.liu@ucdconnect.ie).
• You can get help from your classmates.
**Getting help to understand something is not the same as copying a
solution! **
The best way to get useful answers is to ask good questions.
Don't just send a photo of your computer screen and ask "Why does this not
work?".
Do:
• Send your Java file(s) as an attachment. We can't run code that's in a
photograph to test it out!
• Say what error message you got when you tried to run the code (if
any).
• Say what the code did that you did not expect.
• Say what the code did not do that you did expect.
1 https://www.ucd.ie/t4cms/UCD%20Plagiarism%20Policy%20and%20Procedures.pdf
How to avoid plagiarism: Helping without copying.
If you are trying to help a classmate with a programming assignment, there
are two golden rules:
Never, ever give your code to somebody else.
• You don't know what they will do with it or who they will give it to.
• If somebody else submits code that is the same as yours, you will be
in trouble too.
Don't touch their keyboard (this advice is more relevant when we are in labs together)
• Don't type solutions for them! It will end up looking a lot like your code.
Also, they don't learn anything.
Here are some other ways you can help a friend with an assignment, without
risking plagiarism:
• If their code doesn't work, it's OK to explain what is wrong with it.
• If they don't understand a concept, draw a diagram to explain.
• Tell them about useful methods that I have provided that can help
achieve their goals.
• Describe an algorithm that will help.
• Describe it in words or diagrams, not in code!
• E.g. "You could try saving the node's right child as a variable.
Then you could use a loop to keep getting that node's left child
until you reach the bottom of the tree".
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!