首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做 program、代写 SQL 语言程序
项目预算:
开发周期:
发布时间:
要求地区:
Assignment 2: Rule Minimizer
Introduction
Welcome to the SQL query optimization assignment. This assignment covers an integral part of any database system and aims to deepen your understanding of SQL query optimization. As we delve into the complexities of query analysis and optimization techniques, you will learn to apply logic minimization principles to SQL statements, focusing on achieving efficient execution while maintaining the integrity of the results. This assignment will challenge you to think critically about the relational operations within SQL, understand the underlying processing mechanisms, and refine your queries for optimal performance.
Logic Minimization
SQL query optimization plays a crucial role in enhancing the efficiency and speed of data retrieval. For example, Logic minimization is a heuristic optimization that transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance. At the heart of this optimization lies the application of logic laws of Relational Algebra, which, when applied to SQL queries, can significantly improve their performance by reducing their complexity. The idea is to represent SQL queries as relational algebra expressions, then apply laws and theorems of Boolean Algebra to manipulate and simplify the logical expressions.
The laws shown in Figure 1, such as the Idempotent Law and Absorption Law, provide a framework for simplifying complex queries by eliminating redundant operations and conditions without affecting the query's outcome. This optimization process not only reduces the computational load on the database system but also streamlines query execution, leading to faster response times and more efficient use of resources. Your goal is to implement them.
Idempotent Law and Absorption Law
The Idempotent Law and Absorption Law are fundamental principles within the realm of logic optimization, particularly relevant in the context of SQL query optimization for relational databases. Let's delve into detailed introductions of both laws:
Figure 1: Different Logic Laws
Idempotent Law
The Idempotent Law is grounded in the principle that an operation is idempotent if, when applied multiple times to any value, it yields the same result as if it were applied once. In the context of SQL optimization, this law facilitates the simplification of queries by identifying and removing redundant operations without altering the outcome of the query. The application of the Idempotent Law in SQL queries primarily involves eliminating unnecessary joins or conditions that do not contribute to the final result set, thereby streamlining the query execution process.
For example, if a SQL SELECT statement joins a table with itself based on the same identifier (“SELECT name FROM person AS p INNER JOIN person as p2 ON p.id = p2.id;"), the Idempotent Law suggests that this redundant join can be eliminated without affecting the result (“SELECT name From person AS p;”). Simplifying such queries not only reduces the computational load on the database system but also enhances the efficiency and speed of data retrieval, contributing to faster response times and more efficient use of resources.
Absorption Law
The Absorption Law, deals with the simplification of logical expressions in a way that certain terms in a complex expression can be "absorbed" into others, rendering them unnecessary. In SQL query optimization, applying the Absorption Law means identifying and removing superfluous conditions within the WHERE clause that do not impact the overall result of the query. This law is particularly useful for condensing SQL statements by eliminating redundant or unnecessary conditions, thereby making the queries more efficient and faster to execute.
An application of the Absorption Law might involve a query where a condition is implied by another, more comprehensive condition (“SELECT title FROM movie WHERE title = 'Avengers' AND (title = 'Avengers' OR released = 2020);”). By removing the redundant condition, the query is simplified without changing its semantics (“SELECT title FROM movie WHERE title = 'Avengers';”). For instance, if a query includes conditions that are logically encompassed by other conditions in the query, those redundant conditions can be omitted as per the Absorption Law.
Assignment 2 Requirement
1. Understanding the Existing Code:
○ Familiarize yourself with the provided C++ code snippet and lab 5 within the Optimizer class.
○ Analyze how the `splitString` function is used to parse strings based on a specified delimiter and how it is instrumental in processing SQL query components. This function can be useful to deal with aliases.
○ Review the theory of Breadth-First Search (BFS) and Depth-First Search (DFS), and decide on a way to traverse the parser tree to find opportunities to apply the laws for optimization .
2. Implement the `idempotentLawOptimizer` ,`absorptionLawOptimizer` and `eliminateRedundantJoinConditions` Function:
○ Idempotent Law Optimizer: Extend the given code to create a fully functional `idempotentLawOptimizer`. This function should analyze the SQL SELECT statements and identify redundant joins. (1) This function should examine the WHERE clauses of SQL statements and remove unnecessary conditions that do not impact the overall result of the query like repeatedly appearing conditions. This function should evict redundant joins. For instance, if a table is joined with itself on the same identifier, this join can be eliminated. Your implementation should handle different types of joins and conditions, ensuring that the optimization does not alter the query's intended result.
○ Absorption Law Optimizer: Implement a function, `absorptionLawOptimizer`, to apply the Absorption Law in SQL optimization. This function should examine the WHERE clauses of SQL statements and remove unnecessary conditions that do not impact the overall result of the query. For example, if a condition is logically encompassed by another more comprehensive condition, the redundant condition can be omitted.
○ eliminateRedundantJoinConditions: Develop a function, `eliminateRedundantJoinConditions`, to optimize SQL queries by removing redundant conditions in the JOIN or WHERE clauses. This function should compare the conditions in the JOIN clauses with those in the WHERE clause and eliminate any redundant conditions that do not affect the query's result.
○ Ensure all functions maintain the integrity of the query's intended results while optimizing for performance and simplicity.
○ Incorporate comprehensive error checking and handling to manage unexpected input or parse tree structures.
○ Hint: While implementing these functions, you may find it helpful to develop helper functions for bubbling up parser tree nodes, such as `bubbleAllUp` or `bubbleNullUp`, which can assist in simplifying the conditions in the parse tree.You may also create additional helper functions as needed.
3. Testing and Debugging:
○ Take advantage of the tests provided under `Google_tests/testOptimizer.cpp` to test your implementation. You can also develop your own test cases.
○ Use the enhanced `idempotentLawOptimizer` , `absorptionLawOptimizer` and`eliminateRedundantJoinConditions` to optimize these test queries and validate the correctness of your implementation.
Output Examples
● Idempotent Law
○ Example Input:
“SELECT * FROM Movie
WHERE title = 'Avengers: End Game' OR title = 'Avengers: End Game';"
Expected Output:
“SELECT * FROM Movie
WHERE title = 'Avengers: End Game'”
● Absorption Law
○ Example Input:
“SELECT title FROM movie
WHERE title = 'Avengers' AND (title = 'Avengers' OR released = 2020);”
Expected Output:
“SELECT title FROM movie
WHERE title = 'Avengers';”
○ Example Input:
“SELECT title FROM movie
WHERE (title = 'Avengers' AND released = 2020) OR title = 'Avengers';”
Expected Output:
“SELECT title FROM movie
WHERE title = 'Avengers';”
Public Tests Output (Tree Structure)
1. Idempotent Law: Inner Join Optimization
SELECT name FROM person AS p INNER JOIN person as p2 ON p.id = p2.id;
2. Idempotent Law
SELECT * FROM movie WHERE title = 'Avengers: End Game' AND title = 'Avengers: End Game';
3. Absorption Law
SELECT title FROM movie WHERE title = 'Avengers' AND (title = 'Avengers' OR released = 2020);
4. Absorption Optimization
SELECT title FROM movie WHERE (title = 'Avengers' OR released = 2020) AND title = 'Avengers';
5. Redundant Join Condition Optimization
SELECT r.rating FROM REVIEWED AS r JOIN movie AS m ON r.person_id = m.person_id WHERE r.person_id = m.person_id AND m.released = 2019;
6. Redundant Join Condition Optimization 2
SELECT r.rating FROM REVIEWED AS r JOIN movie AS m ON r.person_id = m.person_id WHERE r.person_id = m.person_id;
7. Redundant Join Condition Optimization 3
SELECT r.rating FROM REVIEWED AS r JOIN movie AS m ON r.person_id = m.person_id WHERE NOT r.person_id = m.person_id;
Submission
In this assignment, you are expected to submit using Autolab. You should submit a "tar" with your "queryOptimization" folder, which should contain the Optimizer.cpp and Optimizer.h(implementation of `idempotentLawOptimizer`,`absorptionLawOptimizer` and `eliminateRedundantJoinConditions` and other helper functions).
How to Submit to Autolab:
1. Go to the website https://mvlander.dns.army/courses/test-course/assessments/Assignment.
2. Use your Andrew email and your name to sign up.
3. Check your email for an activation message and use the access code YATHMX to activate your account.
4. Log in to your Autolab account.
5. Tar your queryOptimization folder using the command: tar -cvf
_Assignment2.tar queryOptimization.
6. Navigate to the assignment submission page.
7. Click on the "Submit" link for Assignment 2.
8. Choose your tarred file and upload it. And you will see the score and feedback (it takes around 260s).
9. You are allowed only 10 attempts.
Rubric
Your assignment will be graded based on the following criteria:
● Correct implementation of the `idempotentLawOptimizer` function;
● Correct implementation of the `absorptionLawOptimizer` function;
● Correct implementation of the `eliminateRedundantJoinConditions` function;
● Number of Tests passed;
● Number of attempts(More than 10 attempts will be penalized);
We strongly recommend starting your work locally and submit your Autolab "final version" as early as possible. Don't leave until the last moment to submit your assignment otherwise you may receive a penalty for late submission. This is because building the C++ project on Autolab can be time-consuming, and there is likely to be a high volume of users as the deadline approaches. You can also test your own test cases before attempting the autolab since everyone has only 10 chances.
Good luck and enjoy!
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做 program、代写 c++设计程...
2024-12-23
comp2012j 代写、代做 java 设...
2024-12-23
代做 data 编程、代写 python/...
2024-12-23
代做en.553.413-613 applied s...
2024-12-23
代做steady-state analvsis代做...
2024-12-23
代写photo essay of a deciduo...
2024-12-23
代写gpa analyzer调试c/c++语言
2024-12-23
代做comp 330 (fall 2024): as...
2024-12-23
代写pstat 160a fall 2024 - a...
2024-12-23
代做pstat 160a: stochastic p...
2024-12-23
代做7ssgn110 environmental d...
2024-12-23
代做compsci 4039 programming...
2024-12-23
代做lab exercise 8: dictiona...
2024-12-23
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!