首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做IEMS 5730、代写 c++,Java 程序设计
项目预算:
开发周期:
发布时间:
要求地区:
IEMS 5730 Spring 2024 Homework 2
Release date: Feb 23, 2024
Due date: Mar 11, 2024 (Monday) 11:59:00 pm
We will discuss the solution soon after the deadline. No late homework will be accepted!
Every Student MUST include the following statement, together with his/her signature in the submitted homework.
I declare that the assignment submitted on Elearning system is original except for source material explicitly acknowledged, and that the same or related material has not been previously submitted for another course. I also acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the disciplinary guidelines and procedures applicable to breaches of such policy and regulations, as contained in the website http://www.cuhk.edu.hk/policy/academichonesty/.
Signed (Student_________________________) Date:______________________________ Name_________________________________ SID_______________________________
Submission notice:
● Submit your homework via the elearning system.
● All students are required to submit this assignment.
General homework policies:
A student may discuss the problems with others. However, the work a student turns in must be created COMPLETELY by oneself ALONE. A student may not share ANY written work or pictures, nor may one copy answers from any source other than one’s own brain.
Each student MUST LIST on the homework paper the name of every person he/she has discussed or worked with. If the answer includes content from any other source, the student MUST STATE THE SOURCE. Failure to do so is cheating and will result in sanctions. Copying answers from someone else is cheating even if one lists their name(s) on the homework.
If there is information you need to solve a problem, but the information is not stated in the problem, try to find the data somewhere. If you cannot find it, state what data you need, make a reasonable estimate of its value, and justify any assumptions you make. You will be graded not only on whether your answer is correct, but also on whether you have done an intelligent analysis.
Submit your output, explanation, and your commands/ scripts in one SINGLE pdf file.
Q1 [20 marks + 5 Bonus marks]: Basic Operations of Pig
You are required to perform some simple analysis using Pig on the n-grams dataset of Google books. An ‘n-gram’ is a phrase with n words. The dataset lists all n-grams present in books from books.google.com along with some statistics.
In this question, you only use the Google books bigram (1-grams). Please go to Reference [1] and [2] to download the two datasets. Each line in these two files has the following format (TAB separated):
bigram year match_count
An example for 1-grams would be:
volume_count
circumvallate 1978 335 91 circumvallate 1979 261 95
This means that in 1978(1979), the word "circumvallate" occurred 335(261) times overall, from 91(95) distinct books.
(a) [Bonus 5 marks] Install Pig in your Hadoop cluster. You can reuse your Hadoop cluster in IEMS 5730 HW#0 and refer to the following link to install Pig 0.17.0 over the master node of your Hadoop cluster :
http://pig.apache.org/docs/r0.17.0/start.html#Pig+Setup
Submit the screenshot(s) of your installation process.
If you choose not to do the bonus question in (a), you can use any well-installed Hadoop cluster, e.g., the IE DIC, or the Hadoop cluster provided by the Google Cloud/AWS [5, 6, 7] to complete the following parts of the question:
(b) [5 marks] Upload these two files to HDFS and join them into one table.
(c) [5 marks] For each unique bigram, compute its average number of occurrences per year. In the above example, the result is:
circumvallate (335 + 261) / 2 = 298
Notes: The denominator is the number of years in which that word has appeared. Assume the data set contains all the 1-grams in the last 100 years, and the above records are the only records for the word ‘circumvallate’. Then the average value is:
instead of
(335 + 261) / 2 = 298, (335 + 261) / 100 = 5.96
(d) [10 marks] Output the 20 bigrams with the highest average number of occurrences per year along with their corresponding average values sorted in descending order. If multiple bigrams have the same average value, write down anyone you like (that is,
break ties as you wish).
You need to write a Pig script to perform this task and save the output into HDFS.
Hints:
● This problem is very similar to the word counting example shown in the lecture notes
of Pig. You can use the code there and just make some minor changes to perform this task.
Q2 [20 marks + 5 bonus marks]: Basic Operations of Hive
In this question, you are asked to repeat Q1 using Hive and then compare the performance between Hive and Pig.
(a) [Bonus 5 marks] Install Hive on top of your own Hadoop cluster. You can reuse your Hadoop cluster in IEMS 5730 HW#0 and refer to the following link to install Hive 2.3.8 over the master node of your Hadoop cluster.
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
Submit the screenshot(s) of your installation process.
If you choose not to do the bonus question in (a), you can use any well-installed Hadoop cluster, e.g., the IE DIC, or the Hadoop cluster provided by the Google Cloud/AWS [5, 6, 7].
(b) [20 marks] Write a Hive script to perform exactly the same task as that of Q1 with the same datasets stored in the HDFS. Rerun the Pig script in this cluster and compare the performance between Pig and Hive in terms of overall run-time and explain your observation.
Hints:
● Hive will store its tables on HDFS and those locations needs to be bootstrapped:
$ hdfs dfs -mkdir /tmp
$ hdfs dfs -mkdir /user/hive/warehouse
$ hdfs dfs -chmod g+w /tmp
$ hdfs dfs -chmod g+w /user/hive/warehouse
● While working with the interactive shell (or otherwise), you should first test on a small subset of the data instead of the whole data set. Once your Hive commands/ scripts work as desired, you can then run them up on the complete data set.
Q3 [30 marks + 10 Bonus marks]: Similar Users Detection in the MovieLens Dataset using Pig
Similar user detection has drawn lots of attention in the machine learning field which is aimed at grouping users with similar interests, behaviors, actions, or general patterns. In this homework, you will implement a similar-users-detection algorithm for the online movie rating system. Basically, users who rate similar scores for the same movies may have common tastes or interests and be grouped as similar users.
To detect similar users, we need to calculate the similarity between each user pair. In this homework, the similarity between a given pair of users (e.g. A and B) is measured as the total number of movies both A and B have watched divided by the total number of movies watched by either A or B. The following is the formal definition of similarity: Let M(A) be the set of all the movies user A has watched. Then the similarity between user A and user B is defined as:
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = |𝑀(𝐴)∩𝑀(𝐵)| ...........(**) |𝑀(𝐴)∪𝑀(𝐵)|
where |S| means the cardinality of set S.
(Note: if |𝑀(𝐴)∪𝑀(𝐵)| = 0, we set the similarity to be 0.)
The following figure illustrates the idea:
Two datasets [3][4] with different sizes are provided by MovieLens. Each user is represented by its unique userID and each movie is represented by its unique movieID. The format of the data set is as follows:
,
Write a program in Pig to detect the TOP K similar users for each user. You can use the
cluster you built for Q1 and Q2 or you can use the IE DIC or one provided by the Google Cloud/AWS [5, 6, 7].
(a) [10 marks] For each pair of users in the dataset [3] and [4], output the number of movies they have both watched.
For your homework submission, you need to submit i) the Pig script and ii) the list of the 10 pairs of users having the largest number of movies watched by both users in the pair within the corresponding dataset. The format of your answer should be as follows:
,
,
//top 1 ...
,
,
//top 10
(b) [20 marks] By modifying/ extending part of your codes in part (a), find the Top-K (K=3) most similar users (as defined by Equation (**)) for every user in the datasets [3], [4]. If multiple users have the same similarity, you can just pick any three of them.
(c)
Hint:
1. In part (b), to facilitate the computation of the similarity measure as
defined in (**), you can use the inclusion-exclusion principle, i.e.
|𝑆∪𝑇| = |𝑆| + |𝑇| − |𝑆∩𝑇|
In your submission, you only need to submit your Pig script together with the following output:
i) the user in [3] whose ID shares the same last 2 digits of your CUHK student ID number. For example, if your CUHK student ID number is ****13, you need to output the Top-3 similar user list for User 013, 113, 213, 313, ..., 513 (if such users exist in the small dataset [3]), i.e.
013,
, ...,
113,
, ...,
...
513,
, ...,
ii) Similarly, for the dataset in [4], only output the Top-3 similar user list for the users whose ID shares the same last 4 digits of your CUHK student ID number.
[10 Bonus marks] Repeat part (b) using Hive.
Q4 [30 marks]: Spark Basic RDD
In this question, you will explore some of the basic RDD concepts in Spark. You need to submit your Spark application to Hadoop cluster (either your own Hadoop cluster or use the Spark Installation in DIC). You can use any programming language supported by Spark but need to operate on the RDD level.
(a) [15 marks] Naive implementation of PageRank in Spark. In this part, write your own PageRank program. Then, run your program on the given dataset [8], submit the code and the top 100 nodes.
(b) [15 marks] Advanced implementation of PageRank in Spark. In this part, you need to take advantage of the pre-partition mechanism to reduce the shuffling overheads. Please adjust the number of partitions (try 3 different cases) and compare their performance. Submit your result and explain your observations.
[Submission Requirements]
1. Submit the source codes and outputs of your programs in one single PDF report.
Besides, for each key step, you should also present the commands used (if applicable), the descriptions (in pure texts), and illustrations (in figures/ screenshots) that help convey and clarify your ideas for solving the problems.
2. Package all the source codes (as you included in Step 1) into a zip file.
3. Please submit both the PDF report and the zip file (i.e., you need to submit two
separate files) to CUHK Blackboard.
Reference:
[1] Google Books 1:
http://storage.googleapis.com/books/ngrams/books/googlebooks-eng-all-1gram-20120701-a. gz
[2] Google Books 2: http://storage.googleapis.com/books/ngrams/books/googlebooks-eng-all-1gram-20120701-b. gz
[3] Small scale dataset
https://mobitec.ie.cuhk.edu.hk/ierg4330/static_files/assignments/movielens_small.csv
[4] Large scale dataset
https://mobitec.ie.cuhk.edu.hk/ierg4330/static_files/assignments/movielens_large_updated.c sv
[5] Cloud Dataproc API
https://cloud.google.com/dataproc/docs/reference/rest
[6] Amazon EMR
https://aws.amazon.com/emr/
[7] One-click Hadoop-Cluster deployment using Amazon EMR (Zoom Recording, please refer to Blackboard -> Course Contents -> Back-up Recordings for the passcode) https://cuhk.zoom.us/rec/share/__ozUsXuqyHy3n5BA-MUm01bJedFK6IBfCqD6Qi2oCfcleG J11rGTeqHi1_45hCO.xGoU3s3813Xn-_Q
[8] SNAP Google Web Data
https://snap.stanford.edu/data/web-Google.html
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!