首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
CS170程序代做、Python编程设计代写
项目预算:
开发周期:
发布时间:
要求地区:
Project 1: Search Algorithms in a Grid
Environment and Path-finding
CS170 Artificial Intelligence, UCR, Winter 2024
1 Introduction
Explore the world of search algorithms in a grid-based environment. In this
project, you will implement different search strategies to navigate from a
starting cell to a target cell, while encountering obstacles and open paths.
This hands-on exercise aims to deepen your understanding of the fundamental search algorithms frequently employed in Artificial Intelligence. This
project also involves determining the shortest path based on the search algorithm you use for exploring the route.
2 Code Structure
You’ll be given a code template containing the SearchAlgorithms class. Your
task is to fill in the methods corresponding to each search algorithm and
ensure they return both the status of the target’s discovery and the final
state of the grid:
• uniform search(): Implement the Uniform Search algorithm.
• dfs(): Implement the DepthFirst Search algorithm.
• bfs(): Implement the BreadthFirst Search algorithm.
• best first(): Implement the Best First Search algorithm, based on
a heuristic you design or choose. Use the Manhattan distance as the
heuristic.
1
• a star(): Implement the A Search algorithm, combining both cost
and heuristic (Manhattan distance).
• agreedy(): Implement the Greedy Search algorithm, focusing solely
on the heuristic (Manhattan distance).
For algorithms that use a priority queue, utilize the heapq module from
Python’s standard library to manage the queue efficiently. The grid is represented as a list of lists, containing:
• s: Starting position.
• t: Target or goal position.
• 0: Empty cells that you can traverse.
• -1: Walls or obstacles that you cannot traverse.
As you traverse the grid, mark the order of cells you visit by replacing the
0s with consecutive numbers. The starting and target positions, represented
by s and t, should remain unchanged.
3 Requirements
• Follow the provided class and method names precisely. This ensures
compatibility with the autograder on Gradescope.
• The function signatures or class names must not be altered.
• Use the Manhattan distance as the heuristic for the Best First, A*, and
Greedy algorithms.
• Utilize the heapq module for implementing priority queues in applicable
algorithms.
• Each search algorithm function must return a tuple containing two
elements: a numeric indicator and the final state of the grid. The
numeric indicator should be 1 if the target is found, and -1 if it is
not found. The final state of the grid should display the marked cells
according to the path found by the search algorithm. For instance,
2
if the target is found, the function could return (1, grid), where 1
represents the successful search and grid represents the final state of
the board.
• When adding to your queue or stack, follow this order: Right, Down,
Left, Up, or the reverse. The order can be reversed as well.
• Return the shortest path from the source to the target using a list of
tuples.
4 Example
Below is an example grid before and after applying the DFS algorithm:
5 Submission
Submit your completed Python script through Gradescope by the specified
deadline.
• You must follow the class and method names exactly for compatibility
with the autograder on Gradescope.
• Do not change the function signatures or class names.
6 Submission
Please submit your Python script through Gradescope by the specified deadline. Note: This project also includes a report, which should be
submitted separately.
3
Figure 1: The initial state of the board.
4
Figure 2: The board after applying DFS. The returned value is 1 and the
final state of the board is displayed. Note that DFS is LIFO, so we explore
up, left, down, right.
5
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!