首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做EF5070、代写c/c++编程设计
项目预算:
开发周期:
发布时间:
要求地区:
Financial Econometrics (EF5070)
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with 𝑝 ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 1990 to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7324 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!