首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
program代写、代做Python, C++/Java编程
项目预算:
开发周期:
发布时间:
要求地区:
Practical Assignment 7
Assessment Overview
Weighting: 80 Points (8% of course grade)
Due date: Friday 28 Sunday 30 Oct Thursday 3 Nov 11:59 pm (SWOT Week)
Gradescope open now
Task
description:
Develop a Parser to convert high-level programming language into a
parse tree. Doing so should help you to:
Practice applying grammar rules
Understand how complex and nested code structures can be
broken down to their component parts.
Understand the basics of Recursive Descent Parsing.
Please post your questions on Piazza or ask during your workshop.
Academic
Integrity
Checklist
Do
Discuss/compare high level approaches
Discuss/compare program output/errors
Regularly submit your work as you progress
Be careful
Using online resources to find the solutions rather than
understanding them yourself won't help you learn.
Do NOT
Submit code not solely authored by you.
Use a public GitHub repository (use a private one instead).
Post/share complete VM/Assembly/Machine code in
Piazza/Discord or elsewhere on the Internet etc.
Give/show your code to others
Your Task
Your task for this practical assignment is to write a parser to convert high-level language
programs into a parse tree that can be later converted to VM Code.
1. Complete the Parser as described and as outlined below.
Submit your work regularly to Gradescope as you progress.
Additional resources and help will be available during your workshop sessions.
2. Test your code.
We're know that things are tight at the end of semester, so we've kept this assignment short
(and hopefully simple).
Part 1 - Recursive Descent Parser (80 points)
We've seen VM Code and how that can be translated to Assembly and Machine code, but
these languages are represented as basic sequences of instructions -- how do we handle the
nested and varied structures of high-level programming languages?
Using your preferred programming language (Python, C++ or Java) implement the
CompilerParser as described below.
This practical assignment follows a similar approach to the Nand2Tetris Compilation Engine.
Template files are provided for each of these programming languages.
Download the Python version HERE
(https://myuni.adelaide.edu.au/courses/72399/files/11771254?wrap=1)
(https://myuni.adelaide.edu.au/courses/72399/files/11771254/download?
download_frd=1) .
Download the Java version HERE
(https://myuni.adelaide.edu.au/courses/72399/files/11771151?wrap=1)
(https://myuni.adelaide.edu.au/courses/72399/files/11771151/download?
download_frd=1) .
Download the C++ version HERE
(https://myuni.adelaide.edu.au/courses/72399/files/11772199?wrap=1)
(https://myuni.adelaide.edu.au/courses/72399/files/11772199/download?
download_frd=1) .
You will need to complete the methods provided in the CompilerParser class.
The provided ParseTree & Token classes should not be modified.
Only submit files for 1 programming language.
Getting Started
1. Start by reviewing chapter 10 of the textbook.
2. Each of the methods listed below needs to apply the corresponding set of grammar rules
to the series of tokens given.
For each set of these grammar rules:
A new parse tree is created.
The tokens are processed 1-by-1.
Tokens matching the grammar rule are added to a ParseTree for that rule.
If the rules are broken (i.e. the sequence of tokens does not match the rules), a
ParseException should be thrown/raised.
Otherwise the ParseTree data structure is returned.
Some of the sets grammar rules require other sets of grammar rules.
For example, the whileStatement rule requires the rules for expression and
statements.
These rule sets should be applied recursively.
3. A ParseTree data structure is returned
Tokens
Each token has a type and corresponding value.
Tokens can have the following types and possible values:
Token Type Value
keyword
symbol
integerConstant A decimal integer in the range 0..32767
stringConstant A sequence of characters not including double quote or newline
identifier A sequence of letters, digits, and underscore ( ), not starting with a digit.
We can read the type of the token with the Token.getType() method, and its value with
Token.getValue()
Parse Trees
Each node in the ParseTree has a type, a value, and a list of children (parse trees nested
inside this tree).
When creating a ParseTree, we set the type and value in the constructor. We can then add
parse trees via the ParseTree.addChild(ParseTree) method. If needed, we can read the type of
the ParseTree with the ParseTree.getType() method, and its value with ParseTree.getValue() .
To review the structure of a ParseTree object, it can be printed; this will output a human
readable representation.
ParseTrees can have the following types which correspond with a set of grammar rules:
Parse Tree
Type
Grammar Rule
class
classVarDec
subroutine
parameterList
subroutineBody
varDec
statements where statement matches the following rule:
letStatement
ifStatement
whileStatement
doStatement
returnStatement
expression
Note the addition of the skip keyword
term
expressionList
Which match the methods we're implementing.
They can also have the same types as listed above for Tokens (and Tokens can be added
as children to ParseTrees via typecasting)
You may have noticed that some grammar elements shown above and in the Jack Grammar
are missing from this list. These rules are listed below. They should be used as part of the
rules above, but are not themselves ParseTree types:
Grammar
Element
Grammar Rule
className
varName
subroutineName
type
op
unaryOp
keywordConstant
subroutineCall
Suggested Approach
A suggested approach is outlined in section 10.1.4 of the Text book.
This involves writing a process(token) method which:
Checks if the next token in the list of tokens matches an expected token
If the token matches, add it to the ParseTree
If the token does not match, throw/raise a ParseError
Advances to the next token (if needed)
This can be done by removing/popping the token from the list
Task 1.1 - Program Structure (40 points)
Complete the program structure related methods:
compileProgram
Jack Code Tokens
Returned ParseTree
Structure
class Main {
}
keyword class
identifier Main
symbol {
symbol }
class
keyword class
identifier Main
symbol {
symbol }
static int a ;
keyword static
keyword int
identifier a
symbol ;
ParseError (the program doesn't
begin with a class)
compileClass
Example Jack Code Tokens
Returned ParseTree
Structure
class Main {
static int a ;
}
keyword class
identifier Main
symbol {
keyword static
keyword int
identifier a
symbol ;
symbol }
class
keyword class
identifier Main
symbol {
classVarDec
...
see
classVarDec
below
symbol }
compileClassVarDec
Example Jack Code Tokens
Returned ParseTree
Structure
static int a ;
keyword static
keyword int
identifier a
symbol ;
classVarDec
keyword static
keyword int
identifier a
symbol ;
compileSubroutine
Example Jack Code Tokens
Returned ParseTree
Structure
function void myFunc ( i
nt a ) {
var int a ;
let a = 1 ;
}
keyword function
keyword void
identifier myFunc
symbol (
keyword int
identifier a
symbol )
symbol {
keyword var
keyword int
identifier a
symbol ;
keyword let
identifier a
symbol =
integerConstant 1
symbol ;
}
subroutine
keyword function
keyword void
identifier myFunc
symbol (
parameterList
...
(see
parameterList
below)
symbol )
subroutineBody
...
see
subroutineBody
below
compileParameterList
Example Jack Code Tokens
Returned ParseTree
Structure
int a, char b
keyword int
identifier a
symbol ,
keyword char
identifier b
parameterList
keyword int
identifier a
symbol ,
keyword char
identifier b
compileSubroutineBody
Example Jack Code Tokens
Returned ParseTree
Structure
{
var int a ;
let a = 1 ;
}
symbol {
keyword var
keyword int
identifier a
symbol ;
keyword let
identifier a
symbol =
integerConstant 1
symbol ;
}
subroutineBody
symbol {
varDec
...
(see varDec
below)
statements
...
(see
statements
below)
symbol }
compileVarDec
Example Jack Code Tokens
Returned ParseTree
Structure
var int a ;
keyword var
keyword int
identifier a
symbol ;
varDec
keyword var
keyword int
identifier a
symbol ;
Task 1.2 - Statements (40 points)
Complete the statement related methods:
compileStatements
Example Jack Code Tokens
Returned ParseTree
Structure
let a = skip ;
do skip ;
return ;
keyword let
identifier a
symbol =
keyword skip
symbol ;
keyword do
keyword skip
symbol ;
keyword return
symbol ;
statements
letStatement
...
(see
letStatement
below)
doStatement
...
(see
doStatement
below)
returnStatement
...
(see
doStatement
below)
compileLet
Example Jack Code Tokens
Returned ParseTree
Structure
let a = skip ;
keyword let
identifier a
symbol =
keyword skip
symbol ;
letStatement
keyword let
identifier a
symbol =
expression
...
see
expression
below
symbol ;
compileIf
Example Jack Code Tokens
Returned ParseTree
Structure
if ( skip )
compileReturn
Example Jack Code
Tokens
Returned ParseTree
Structure
return skip ;
keyword return
keyword skip
symbol ;
returnStatement
keyword return
expression
...
see
expression
below
symbol ;
For some of the above methods, you will also need to partially implement the
compileExpression method below.
At this stage, implement the compileExpression to match the grammar rule .
Task 1.3 - Expressions (Optional - up to 20 BONUS points)
Complete the expression related methods:
This section is optional and is worth Bonus Points
compileExpression
Example Jack Code Tokens
Returned ParseTree
Structure
skip keyword skip
expression
keyword skip
1 + ( a - b )
integerConstant 1
symbol +
symbol (
identifier a
symbol -
identifier b
symbol )
expression
term
...
see term
below
symbol +
term
...
see term
below
compileTerm
Example Jack Code Tokens
Returned ParseTree
Structure
1
integerConstant 1
term
integerConstant 1
( a - b ) symbol (
identifier a
symbol -
identifier b
symbol )
term
symbol (
expression
term
identifier
a
symbol -
term
You're done!
Submit your work to Gradescope using the button below.
You may submit via file upload or GitHub.
If using GitHub, ensure your repository is private.
Your files should either be:
In the root of your submission (i.e. no subdirectory)
~ or ~
In a directory named prac7
Be sure to submit all files with each submission.
Additional Resources
The following resources may help you complete this assignment:
identifier
b
symbol )
compileExpressionList
Example Jack Code Tokens
Returned ParseTree
Structure
1 , a - b
integerConstant 1
symbol ,
identifier a
symbol -
identifier b
expressionList
expression
...
see
expression
above
symbol ,
expression
...
see
expression
above
Examples
See above
This tool needs to be loaded in a new browser window
Chapter 10 of the Text Book
(https://myuni.adelaide.edu.au/courses/72399/external_tools/1284) for Compiler
Implementation
Section 10.1.4 includes basics of a suggested approach.
Week 11 & 12 Workshops
Guide to Testing and Writing Test Cases
(https://myuni.adelaide.edu.au/courses/72399/pages/guide-to-testing-and-writing-test-cases)
Figure 10.5 on page 201 of the Text Book
(https://myuni.adelaide.edu.au/courses/72399/external_tools/1284) for specification of the
Jack Grammar.
Further resources will be added over the coming days.
Gradescope Link Temporarily Broken - Log In directly using "School Credentials"
https://www.gradescope.com/ (https://www.gradescope.com/)
See Pinned post in Piazza if having issues with the above.
Load Practical Assignment 7 in a new window
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!