首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MATH36031代写、代做MATLAB设计编程
项目预算:
开发周期:
发布时间:
要求地区:
MATH36031 Project 2 - deadline 24th November 2023, time 1100hrs.
In this project, the dynamics between a fox and a rabbit will be investigated, by solving
differential equations modelling their positions at different times. The initial configuration
is shown in Figure 1, where the fox starts chasing the rabbit while the rabbit tries to escape
from its predator and moves towards its burrow. The fox is initially located at the origin
O(0, 0) and the rabbit is at (0, 800). There is a circular fence with an opening G at (0, 300).
The rabbit moves in a circular path of radius 800 with speed sr
1
towards its burrow. The
rabbit’s burrow is located at 800(− sin(π/3), cos(π/3)). The path of the fox is initially
directed straight towards G with speed sf . After having reached the opening at G, the
subsequent path the fox takes in trying to catch the rabbit depends on whether its view of
the rabbit is blocked by the straight line fence between A and E or not, as follows:
if after having passed through the opening G the rabbit is in sight, the fox’s attack
path points directly towards the rabbit (the direction of the velocity vector of the fox
is exact from the fox to the rabbit);
if the view of the rabbit is blocked by an impenetrable straight line fence AE, see
figure 1, then the fox runs directly towards the corner A. The coordinates of AE are
1The subscripts f and r denote the fox and rabbit respectively. The units of the coordinates are metres.
G
C C
O
A
E
Burrow
Figure 1: Schematic diagram showing the geometry and obstacles with O denoting the origin
of coordinates. There is a circular fence C with a small opening at G (0, 300). There is a
fence at AE with A (−350, 620) and E(−500, 350). The dashed green line shows the path
followed by the rabbit towards it burrow. The dashed-dotted red line shows the initial path
of the fox.
1
A(−350, 620) and E(−500, 350). Once the fox can see the rabbit again its attack path
points directly towards the rabbit.
Question 1: Constant speeds.. Assuming that both the fox and the rabbit run with
constant speeds sf = sf0 = 17m/s and sr = sr0 = 12m/s respectively, determine whether
the rabbit can be captured before it reaches its burrow. The rabbit is considered to be
captured by the fox, if the distance between them is smaller than or equal to 0.1 meter.
Question 2: Diminishing speeds. Let us consider a more realistic scenario, when
the hungry fox meets the tired rabbit. Because neither the fox nor the rabbit are in their
best conditions, their chasing/escaping speeds diminish in time, according to the amount of
distance (starting from the time they find each other and start running) they have travelled
so far. More precisely, their speeds at time t are given by
sf (t) = sf0e
−µf df (t)
, sr(t) = sr0e
−µrdr(t)
,
where sf0 = 17m/s and sr0 = 13m/s are the same initial speeds as above, µf = 0.0002m−1
and µr = 0.0008m−1 are the rates of the diminishing speeds, df (t) and dr(t) are the distance
they have travelled up to time t(> 0). Determine whether the rabbit can be captured before
it reaches its burrow. (You may assume that this diminishing speed starts from t = 0).
Outputs required You are required to submit a report (maximum 8 pages including
any appendices) in pdf form via the Turnitin submission box on Blackboard. Additionally
you need to submit your m-files used for the MATLAB codes via the Blackboard Submission
Box also on Blackboard. As part of the required output, in your report give (i) the time T
and the location of the fox when either the rabbit is captured or the rabbit escapes to the
burrow; (ii) the distance travelled by the fox in time T . Additionally provide a plot showing
the paths taken by both animals.
Additional information and guidelines
1. All coding must be done in MATLAB.
2. Treat both the fox and the rabbit as points, without worrying about their finite sizes
(as in most models).
3. The questions can be answered with different approaches, but you need to use the
built-in ODE solver ode45 discussed during the lectures.
4. Avoid using hard-coded numbers. Any number in your code should either be given as
initial condition, or be derived from these conditions.
5. Keep to the page length not exceeding eight A4 pages, and there is no need for a title
page or abstract for a relative short report like this. Font sizes should be no smaller
than 11 point, and page margins no smaller than 2cm.
6. List the complete code of the whole function at the end of each question, or in an
appendix. Make your source code more readable, by keeping the indentation and
2
stylistic features, and can be copied from your submitted. Your published results
should be reproducable from the code attached.
7. Have a look at the generic rubric about how your report will be marked, and also the
intended learning outcomes about what you are expected to achieve in the end.
8. Avoid copying (too many) sentences directly from the project description, and try to
restate the problem with your own words or examples if possible.
9. You may use your report in the future as evidences of written work, so take it seriously.
10. Your target audience is a fellow student on your course: explain the questions so that
the report can be understood without this project description and your approach could
be implemented in another computer language like Python. The report should indicate
to the reader how well you understand the problem and the approach you took. Your
goal will be to communicate your solutions to another person rather than to show
you’ve completed the assignment.
11. Balance the explanation of the approach and the comments in the code. Avoid undercommenting and over-commenting.
12. Aim for precision and clarity of writing.
13. Since there is no final exam, you are advised to spend at least 15 hours on each project,
with additional self-study if you are less experience with computer programming. Remember for a 10 credit module like this one, you are expect to spend 100 = 10 Ö 10
hours in total (including lectures, labs, self-study and coursework).
14. Please do not put any personal information on the report, only your student ID number.
15. The submission for each project will be open two weeks before the deadline. Only
your last submission will be marked, and anything submitted after the deadline will
be treated late and any penalty will be applied by the Teaching and Learning Office
in June according to the Undergraduate Student Handbook.
16. Whilst this project can be done without the use of any artificial intelligence (AI)
software tools, if you use any AI tools or software to help you with your
project, you must mention this in the report. Please study the guidelines
at
https://manchester-uk.libanswers.com/teaching-and-learning/faq/264824
on how to do this correctly.
The content and accuracy of the report will be your responsibility alone,
and any factually incorrect statements or mathematically incorrect content
will be penalised.
3
17. Your attention is also drawn to to the University’s Academic Malpractice Policy, see
https://documents.manchester.ac.uk/display.aspx?DocID=639. See also the guidelines
on the use of AI at:
https://studentnews.manchester.ac.uk/2023/10/30/4-things-you-need-to-know-about-ouruniversitys-new-ai-guidance/
18. We are obliged to report cases of suspected academic malpractice, and people may
be subject to an additional oral assessment on the content of the report and codes
submitted.
4
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!