首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代做program、代写c/c++程序语言
项目预算:
开发周期:
发布时间:
要求地区:
Introduction
The purpose of this assignment is to become more familiar with bit-level representations of integers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working your way through them.
Logistics
You may work in pairs for this assignment. If you work with a partner, list both names and both PIDs in a comment at the beginning of the bits.c file you submit. Below is the link to the tar file for the assignment.
datalab-handout.tar
Handout Instructions
Start by downloading the datalab-handout.tar to a (protected) directory on a Linux machine in which you plan to do your work. Then give the command
unix> tar xvf datalab-handout.tar
This will cause a number of files to be unpacked in the directory. The only file you will be modifying and turning in is bits.c.
The bits.c file contains a skeleton for each of the 4 programming puzzles. Your assignment is to complete each function skeleton using only straightline code for the integer puzzles (i.e., no loops or conditionals) and a limited number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight operators:
! ~ & ^ | + << >>
A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8 bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.
The Puzzles
This section describes the puzzles that you will be solving in bits.c.
Table 1 lists the puzzles in rough order of difficulty from easiest to hardest. The “Rating” field gives the difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number of operators you are allowed to use to implement each function. See the comments in bits.c for more details on the desired behavior of the functions. You may also refer to the test functions in tests.c. These are used as reference functions to express the correct behavior of your functions, although they don’t satisfy the coding rules for your functions.
Datalab puzzles.
Name Description Rating Max ops
tmin() return minimum two’s complement integer 1 4
negate(x) return -x 2 5
isLess(x, y) if x < y then return 1, else return 0 3 24
logicalNeg(x) implement the ! operator 4 12
Evaluation (Note: point values may be adjusted here to make the assignment worth the same as other projects)
Your score will be computed out of a maximum of 50 points based on the following distribution:
10
Puzzle 1 Correctness points.
20
Puzzle 2 Correctness points.
20
Puzzle 3 Correctness points.
10
Puzzle 4 Correctness points.
Correctness points. The puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted sum totals to 50. We will evaluate your functions using the btest program, which is described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by btest, and no credit otherwise.
Performance points. Our main concern at this point in the course is that you can get the right answer. However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore, some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function we’ve established a maximum number of operators that you are allowed to use for each function. This limit is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points for each correct function that satisfies the operator limit.
Style points. Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your commenting. Your solutions should be as clean and straightforward as possible. Your comments should be informative, but they need not be extensive.
Performance and Style points will be manually graded after the assignment is due.
Grading your work
We have included some grading tools in the handout directory — btest, dlc, and driver.pl — to help you check the correctness of your work.
btest: This program checks the functional correctness of the functions in bits.c. To build and use it, type the following two commands:
unix> make
unix> ./btest
Notice that you must rebuild btest each time you modify your bits.c file.
You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest to test only a single function:
unix> ./btest -f bitXor
You can feed it specific function arguments using the option flags -1, -2, and -3:
unix> ./btest -f bitXor -1 4 -2 5
Check the file README for documentation on running the btest program.
dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use to check for compliance with the coding rules for each puzzle. The typical usage is:
unix> ./dlc bits.c
The program runs silently unless it detects a problem, such as an illegal operator, too many operators, or non-straightline code in the integer puzzles. Running with the -e switch:
unix> ./dlc -e bits.c
causes dlc to print counts of the number of operators used by each function. Type ./dlc -help for a list of command line options.
driver.pl: This is a driver program that uses btest and dlc to compute the correctness and performance points for your solution. It takes no arguments:
unix> ./driver.pl
Your instructors will use driver.pl to evaluate your solution. You solution must work when driver.pl is used. If you code does not run using driver.pl it will score a 0.
Handin Instructions
You will turn in your bits.c to Canvas. We hope to use the grader to score your assignment. But this may have to be done manually and if so we will do this as often as possible.
If you worked with a partner, only one of you needs to submit the file. Make sure both names and PIDs are at the top; if your partner's name is not on the submission, they will not receive a score.
Scoring
The grader will assign up to 68 points. The remaining 12 points will be awarded by the GTAs for comments.
The comments must explain the logic of what your code does. If these are not present you will not receive these points.
Advice
Don’t include the
header file in your bits.c file, as it confuses dlc and results in some non-intuitive error messages. You will still be able to use printf in your bits.c file for debugging without including the
header, although gcc will print a warning that you can ignore.
The dlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced by gcc. In particular, any declaration must appear in a block (what you enclose in curly braces) before any statement that is not a declaration. For example, it will complain about the following code:
int foo(int x)
{
int a = x;
a *= 3; /* Statement that is not a declaration */
int b = a; /* ERROR: Declaration not allowed here */
}
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!