首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
代写program、代做R程序语言
项目预算:
开发周期:
发布时间:
要求地区:
Overview
The purpose of this assignment is to get familiar with the basic concepts and techniques of data mining and gain experience in R and data mining applications. In this group project, you are expected to apply data mining techniques to predict hotel reservation cancellations using the R programming language.
Dataset
Online hotel booking platforms have made it easier for guests to cancel hotel reservations for free or at low cost, but this can lead to lost revenue for hotels. In this project, we will use data mining techniques to analyze hotel reservation data and help hotel owners better predict whether a customer will accept or cancel a reservation. The dataset used in this assignment contains information on around 18,000 hotel reservation records. In the hotel_reservation.csv file, each row contains information about one reservation record. The columns are explained in a separate file named Variables description.txt.
Requirements and Tasks
Given the datasets, you are expected to finish the following tasks using R programming language. You are allowed to use existing R libraries to solve the following tasks. Tasks 1 and 2 are group work; Tasks 3 and 4 are individual work. Please include all the source code and results for T1 and T2 in a group pdf file; include all the source code, results and evaluation report for T3 and T4 in an individual pdf file. Please also explain anything that is not obvious in the pdf files.
T1. Exploratory Data Analysis – Group (25 marks)
T1-1: Load the CSV file; show the dimensionality, structure and summary of the dataset.
T1-2: Calculate and visualize the number of guests from different countries.
T1-3: Calculate and visualize the average number of nights the guests stayed per month.
T1-4: Calculate and visualize the number of guests per month for both Resort Hotel and City Hotel.
T1-5: Calculate and visualize the average hotel price (adr) of each month for both Resort Hotel and City Hotel.
T1-6: Analyze data visualization results and summarize your findings in the pdf file.
T2. Data Pre-processing – Group (25 marks)
In task 2, you need to perform the following data pre-processing tasks on the given dataset. Each pre-processing task may be handled with different methods, e.g., fill or drop missing values. Please discuss with your team members and select a suitable method for those tasks.
T2-1: Check for missing values and handle them if they exist. T2-2: Check for duplicates and remove them if they exist.
T2-3: Plot data distribution, check for outliers and remove them if they exist.
T2-4: Apply data normalization.
T2-5: Encode categorical values. T2-6: Store the preprocessed dataset into a new CSV file.
T3. Modelling – Individual (30 marks)
In Task 3, you need to build one data mining model based on the pre-processed dataset in Task 2. If you made further pre-processing steps for better model performance, please explain the steps in your individual pdf file.
T3-1: Each team member applies one different data mining model (e.g., kNN, logistic regression, decision tree, random forest, SVM, etc.) to predict if a hotel reservation will be cancelled (attribute in the second column of the dataset) using the remaining attributes.
T3-2: Use k-fold cross validation with k = 5 folds to evaluate performance. T3-3: Select features and/or tune model parameters to achieve the optimal performance. Show (or plot) model performance under different feature selection and/or parameter tuning settings.
T3-4: Report the best prediction results (i.e., Accuracy, Precision, Recall, F1-score) and the corresponding running time.
T4. Evaluation – Individual (20 marks)
T4-1: Use one example from the given dataset and draw plots or figures to explain how the input is processed by you model to generate prediction results.
T4-2: Discuss the performance of your model with your team members, i.e., Accuracy, Precision, Recall, F1-score and running time (Run the models under the same setting if necessary). Analyze the performance of your model.
T4-3: Discuss the advantages and disadvantages of the model you choose and point out some future directions to further improve model performance.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!