首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
ELEC 9741程序讲解、辅导Java,Python编程语言 讲解R语言编程|辅导R语言程序
项目预算:
开发周期:
发布时间:
要求地区:
ELEC 9741: Assignment 1, 2021
Instructions
1 due in Moodle, Wednesday June 30, 4pm
2 Signed School Cover Sheet attached
3 TYPED PDF only - no microsoft word docs.
4 Follow the Homework Rules.
5 Computeroutput : no commentary? no marks.
6 Analyticalresults : no working? no marks.
7 means you can use Matlab; else not.
8 No Copyingexcept from lectures ; No Discussion.
Q1 (15) Theory
(a) Impulse Response.
Consider the LTI system st = (h ? u)t where ut is
the input signal and hr, r = 0, · · · is the impulse re-
sponse.
(i) Suppose the input is a white noise sequence i.e.
iid(0, σ2u).
(ii) Suppose the impulse response is
hr = rβ
r, r = 0, 1, 2, · · · where β = e?1/τ
(iia) Explain what are the stability restrictions
on τ if any.
(iib) Prove that the maximum of hr occurs at the
integer closest to τ . Find the value of that
maximum.
(iic) Derive a closed form formula for σ2s .
(b) Noise Model.
Consider the stationary process
Yt = a+ φYt?2 + t ? θt?2, t = 1, 2, · · ·
where t is a Gaussian white noise sequence of zero
mean and variance σ2.
(i) Explain what are the stability/stationarity con-
straints on φ, θ
(ii) Derive closed form expressions for the mean and
acs of Yt.
Q2(15) (Impulse Response Estimation)
(a) Simulation.
Write an mfile to simulate an FIR version of the sys-
tem described in Q1(a) when the output is measured
in noise
yt = st + nt t = 1, · · · , T
where nt are iid(0, σ2) independent of the ut sequence.
Also hr = 0, r ≥ mo + 1.
The variance signal to noise ratio (vsnr) is defined by
vsnr =
var(st)
var(nt)
=
σ2s
σ2
With mo = 45, τ = 15, T = 500, vsnr = 1, σ2 = 1,
repeatedly simulate the system for R = 100 repeats.
(i) For each repeat compute the sample variance of
st. Display the R sample variances in a histogram
and mark the true value σ2s from the formula in Q1 on
the histogram. The value of σ2s from Q1 is not quite
the correct value to use here; why? But it should be
very close; why? Comment on the histogram.
(b) ? Parameter Estimation.
Write an m-file to compute the penalized least squares
estimator and its standard errors1
(i) With τ = 15, T = 400, vsnr = 1 simulate the
system once and compute the penalised least squares
estimator of β for a grid ofm,λ values. Compute and
display the BIC for this grid.
(ii) Derive a formula for the variance of the penalized
least squares estimator.
(iii) Find the values of λ,m that minimize BIC and on
top of the true FIR, plot the corresponding estimated
FIR together with 95% confidence curves based on
the standard errors of the estimated β’s2. Comment
on the results.
Q3 (5). ? Statistical Graphics.
The graphics/plots you display in Q1, Q2 will earn up to 5
marks.
1se(β?r) =
√
var(β?r), r = 1, · · · ,m
2we ignore the bias
Q3(15) (Noise Modeling)
Do not use any specialised matlab commands such as zp2tf,
arima, aic, bic etc.
(a) ?Write an mfile to simulate a stationary AR(3) time
series driven by a zero mean Gaussian white noise of
unit variance.
Your mfile should accept as input, three real roots or
one real root and a complex root; all non-zero.
It should produce the AR parameters & variance di-
rectly as well as the simulated values as output.
Show two simulations (T=200) (on a single page) one
for each of the above cases. List the two sets of pa-
rameters used. In each case ensure that γo ≥ 3.
(b) ? Using your mfile simulate an AR(3) with roots
(.9,.7,.5) for T=200. List the true parameter values.
Using least squares regression3 produce estimates for
the 3 parameters, the noise variance as well as stan-
dard errors for the parameters.
Are the estimates within 2 standard errors of the true
values?
(c) Using your mfile simulate new data (T=100) from
the same model (ii) compute BIC4 and find its mini-
mizing order p?. Show a single plot of BIC together
with its two components.
Give the parameter estimates corresponding to p? and
their standard errors.
Also do a statistical model diagnosis using just the acs
of the residuals. What conclusions do you draw about
the quality of the estimated parameters and model or-
der?
3write your own mfile; don’t use any matlab command for any regres-
sion related computations
4using your own mfile; not matlab’s BIC command
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!