首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
讲解CNP 2001程序、辅导C/C++编程、c++编程辅导 讲解数据库SQL|辅导Python编程
项目预算:
开发周期:
发布时间:
要求地区:
Page 1 of 7 COS
CNP 2001/159.341
AKLI
MASSEY UNIVERSITY
AUCKLAND CAMPUS
EXAMINATION FOR
159.341 PROGRAMMING LANGUAGES, ALGORITHMS AND CONCURRENCY
SEMESTER ONE 2020
_________________________________________________________________________________________________________
Time allowed is THREE (3) Hours.
All students should answer all FIVE (5) questions
MASSEY UNIVERSITY
Non-programmable calculators only are permitted.
Students may NOT remove any part of this exam paper from the exam room.
The exam paper will be made available on the University Library website.
This exam is worth 60 Marks
Page 2 of 7 COS
Question 1 – Programming Languages [15 marks]
a) What is the purpose of a programming language? [1 mark]
b) Name and describe the four layers of a programming language. Give an example [4 marks]
of what would be defined in each layer.
c) Discuss the three main criteria used for language evaluation. Illustrate your [3 marks]
answer with an example of a tradeoff between criteria.
d) Describe the model of computations of both imperative and functional [2 marks]
languages and compare them.
e) Explain the meaning of orthogonality with respect to programming languages. [2 marks]
Give an example of non-orthogonality in a language of your choice (other than C).
f) Numbers in programming languages may take several forms: [3 marks]
314 159.265 3.58979E32 +384 -626
+43.383 -279.502 -8.84E-19 7E-16 -9.E3
Write a regular expression to describe these numbers which are based on floatingpoint.
Explain any assumptions you make about your rules.
Page 3 of 7 COS
Question 2 – Synchronisation [8 marks]
a) Below is a proposed solution to the Critical Section Problem. [4 marks]
(Assume that two threads are launched with the id's 0 and 1)
int lights[2]; // lights are shared
int turn;
void thread_function(int id) { // id is either 0 or 1
int j = 1 - id; // j is id of other thread
while(true) {
lights[id] = 1;
turn = id;
while((lights[j] == 1) && (turn == j)) {} // wait
// --- perform critical section ---
lights[id] = 0;
}
}
Is this solution correct? Either provide a justification of why it is correct or give an example of
how it fails one of the four requirements for the critical section problem.
Note: Do not worry about memory barriers, assume that memory transactions are performed
in order and are immediately visible to the other thread.
b) Briefly describe a solution to the Critical Section Problem using a hardware [2 marks]
solution.
c) What would happen if a semaphore intended to be used for mutual exclusion [2 marks]
was initialised to 2 instead of 1?
Page 4 of 7 COS
Question 3 – Deadlock [10 marks]
a) Briefly describe the four necessary conditions for deadlock to occur [2 marks]
(1-2 sentences each).
b) Three machinists – Anne, Bob and Charles are working on three separate [8 marks]
jobs in their shared workshop. In the shop they have the following equipment:
4 Drill Bits
2 End Mills
2 Face Cutters
3 Gear Cutters
Each piece of equipment can only be used by one machinist at a time.
Anne needs at most: 2 drill bits, 1 end mill, 1 face cutter and 2 gear cutters.
Bob needs at most: 1 drill bit, 2 face cutters and 1 gear cutter.
Charles needs at most: 2 drill bits, 2 end mills, 1 face cutter and 1 gear cutter.
At some point in time the equipment is being used as follows:
Anne has 1 drill bit, 1 end mill and 1 gear cutter.
Bob has 1 drill bit and 1 gear cutter.
Charles has 1 end mill and 1 face cutter.
i. Is this state safe? Use the bankers algorithm to prove your answer and identify a safe
sequence (if one exists).
ii. Charles requests the use of a drill bit, is it safe to grant this request? Justify your answer
by either showing a safe sequence or explaining why one does not exist.
iii. If Charles instead requests the use of a gear cutter, is it safe to grant this request? Again
justify your answer by either showing a safe sequence or explaining why one does not
exist.
Page 5 of 7 COS
Question 4 – Multithreaded Programming [12 marks]
a) Compare and contrast the multi-threading approaches of C++ std threads [4 marks]
and OpenMP (from a language perspective). Give an advantage of each.
b) Consider the following architecture: [4 marks]
The main processing element unit MPU executes like a regular CPU with a
memory cache and access to main memory.
There are also a number of small processing units SPUs that have their own
local memory area LM. The MPU can access the LM of each SPU but an SPU
may only access their own local memory (all SPUs can also access the main
memory area).
Each SPU is assigned units of work by the MPU (may be different tasks).
i) Classify the architecture in terms of Flynn's Taxonomy
ii) Classify the architecture in terms of memory architecture
c) There is a large dataset stored in a binary tree structure and we want to [4 marks]
determine whether a particular value is stored in the tree or not. The data
stored in the tree is not sorted in anyway so a brute-force search is the only
option. The tree is also very unbalanced so different branches have different
heights.
Describe a design for a multi-threaded solution with the primary goal of reducing
the time taken to find a particular value. Your answer should:
• Outline your overall approach
• Describe the paradigm it is based on
• Suggest a language/API to use
• Provide a justification for your decisions
Page 6 of 7 COS
Question 5 – Multithreaded Programming [15 marks]
Dennis has written the following multi-threaded program written in C/C++ to simulate customers
getting their cars washed at a valet.
#define NVALET 4
#define NSPACES 10
#define NCUSTOMERS 20
semaphore sem_customer;
semaphore sem_valet;
semaphore sem_customers[NCUSTOMERS];
int customer_key;
void* valet_thread(void *p) {
long id = (long)p;
while(true) {
wait(&sem_customer); // Wait for customer
signal(&sem_valet); // Wake up customer
int key = customer_key; // Get customer key
freeSpaces += 1; // One more free space
printf("Valet %li cleaning car %li.\n", id, key); // Clean car
sleep(1);
signal(&sem_customers[key]); // Tell customer car is finished
}
}
void* customer_thread(void *p) {
long id = (long)p;
while(true) {
if(freeSpaces > 0) { // Check for free space
freeSpaces -= 1; // Park car in free space
signal(&sem_customer); // Customer has arrived
wait(&sem_valet); // Wait for Valet
customer_key = id; // Set key
wait(&sem_customers[id]); // Wait for Valet to clean car
} else {
sleep(5); // Come back later
}
}
}
int main() {
unsigned long i;
create(&sem_valet, ??);
create(&sem_customer, ??);
for(i = 0; i < NCUSTOMERS; i++) {
create(&sem_customers[i], ??);
create_thread(customer_thread, (void*)i); // Create Customer Thread
}
for(i = 0; i < NVALET; i++) {
create_thread(valet_thread, (void*)i); // Create Valet Thread
}
// Wait for program to complete
Sleep(86400000ULL);
}
(continued over)
Page 7 of 7 COS
Synchronisation is provided by semaphores with the type semaphore and three functions
create, signal and wait that initialise, signal and wait on a semaphore respectively.
A separate thread is created for each of the customers and each of the valets.
Each Customer should use the following algorithm:
if there is a free space to park
park the car in the free space
signal the valets that a customer has arrived
wait for a valet to be available
give them your key
wait for the valet to clean your car
else
wait for a while
repeat
Each Valet uses the following algorithm:
wait for a customer to arrive
signal the customer that a valet is available
get their key
remove the car from the parking space
clean the car
signal the customer that their car is ready
repeat
There are several problems with the existing program.
a) Dennis is unsure what values the semaphores sem_valet, sem_customer [3 marks]
and sem_customers[NCUSTOMERS] should be initialised to. Give the
appropriate values that each semaphore should be initialised to.
b) The program has race conditions, identify them and describe the issues may [4 marks]
arise if they are not fixed.
c) Describe a strategy for preventing each of the race conditions you identified in [4 marks]
part b. Your strategy may make use of new semaphores but should not
fundamentally change the algorithms of the customers or valets.
d) Write new versions of valet_thread() and customer_thread() that [4 Marks]
implement your strategy. You should also make it clear what value any of your
new semaphores should be initialised to.
+ + + + + + + +
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!