首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP3004程序讲解、辅导c++,Python程序、Java编程讲解 调试Matlab程序|讲解留学生Prolog
项目预算:
开发周期:
发布时间:
要求地区:
COMP3004/COMP4105
Designing Intelligent Agents
Coursework
Colin Johnson
Overview
The coursework for this module is based around you designing intelligent autonomous
agents and an environment with which they interact, setting those agents a task, asking one
or more questions about that task, and evaluating it using experimental methods. You will
then present the results from this in a report, which will also explain the context for the work. Details
An autonomous intelligent agent is a program that operates in a particular environment, perceives aspects of that environment, and then carries out actions that change that
environment to carry out some task. Typically, these actions are a mixture of responses to its
perception and proactive actions such as exploration. Your task for this coursework is to design an agent-based system containing the following
four aspects:
An Environment. This is the (virtual) place where the agents will operate. It could be one of: A simulation of a physical environment in which mobile robotic agents move. This
could be the simulation used in the classes earlier in the semester (perhaps
extended), a robot environment such as The Player Project
(http://playerstage.sourceforge.net), or a project in Unity or a similar game
environment if you are familiar with one from elsewhere. A chatbot environment such as the ones used in the classes. The blackboard system used in the class where we discussed language agents
writing poetry
The Bristol Stock Exchange system introduced in the classes later in the semester
(https://github.com/davecliff/BristolStockExchange) or a similar simulation of some
aspect of the economy or society
A game environment such as Ms. PacMan (https://gym.openai.com/envs/MsPacman- v0/), the Open Racing Car Simulator (http://torcs.sourceforge.net), RoboCup
(https://www.robocup.org/leagues/23) or similar (see e.g. http://www.gvgai.net) One of the more complex task environments from the OpenAI Gym
(https://gym.openai.com)
There is no need to develop the environment yourself—the focus of the project will be on the
agents in the environment (chatbots, robots, trading agents, game-playing agents, autonomous drivers, etc.) – but it is likely that you will set up the details of the environment
to address your specific question. You are allowed to use the code from the classes, but
please try to make it clear broadly which parts of the code are taken from the class examples, and which is your own work (we appreciate that this is sometimes complicated to do at a
line-by-line level, but you should indicate this in broad terms). Autonomous Agents. You should introduce one or more autonomous agents into the
environment, which use some kind of AI to solve a task.
Examples of AI could be an AI planning system such as Goal Oriented Action
Planning (http://alumni.media.mit.edu/~jorkin/goap.html), a search algorithm such as
A* search, a genetic or swarm search, a reinforcement learning algorithm, fuzzy logic, or a hard-coded reactive or state-machine AI. The task will be one relevant to the environment: e.g. a robot vacuum cleaner
clearing up dirt, a chatbot taking an order from a customer, a trader trying to optimise
its returns, a game player trying to get a high score in a game, etc. Within reason, you can use any language to do this. If you are planning to use anything
other than Python, Java, Matlab/Octave, JavaScript, and standard web technologies such as
HTML/CSS, then please mention this in your topic approval. A Question. You should be asking a specific question (or a set of related questions) about
your system. For example: How do different approaches (a genetic algorithm, an A* search algorithm, a hard- coded heuristic) compare in terms of task performance?
How does the performance of the system change as we vary the number of agents in
it?
If the system is trained on one version of the environment, does that learning transfer
over to a new version of the environment How do different kinds of communication/coordination between agents effect the
efficiency of those agents on the task
How much improvement does storing some information (e.g. a map of the
environment) make compared to carrying out the task in a purely reactive way?
How do different kinds of sensing/perception systems affect the capacity of the agent
to carry out its task?
How sensitive is the agent to error/noise?
A Set of Experiments. You should answer your question by carrying out a set of experiments. Remember the structure that we talked about in one of the lectures: implement code that carries out a run of the agent’s behaviour and measures
performance
then, run that code multiple times to get a measure of average performance
then, repeat that process for the different conditions in your question, and use
descriptive statistics, charts/visualisation, and/or inferential statistics (e.g. significance tests) to test your question
Then, you are in a position to discuss the question using these experimental results as your
evidence. Examples
Here are a few examples of things that you could do. You don’t have to do one of these—
indeed, we would prefer you to come up with your own idea—but, these would all be
acceptable project ideas if you want to do them: To take the “robot vacuum cleaner” from the early classes, and experiment with
different numbers of robots, and different coordination strategies (e.g. robots try to
stay a fixed distance from each other, compared to sharing a map that they build up) Contrast random, fixed and planned orders of asking questions in a chatbot, and see
(perhaps by doing a brief user test) which one is better. Take a number of different trading strategies and run them in the Bristol Stock
Exchange system with varying amounts of noise/uncertainty, to see how robust each
strategy is.
Take the “avoid the cats” problem from the class, and compare a number of
strategies for the problem: warning the cats vs. moving out of the way, and learning
when to act based on a simple statistical approach vs. a decision-tree approach. Consider the problem of planning a robot’s movement around a mapped environment
(e.g. the map generated from WiFi triangulation introduced in one of the classes). Contrast A* search and genetic algorithms on this problem, and compare them both
against random wandering. Topic Approval
You should submit a short description of your project idea (around a paragraph, 100 word)
on the Moodle page by 15:00 on the 7
th May 2021. We will then give you feedback on
whether the project is an acceptable one, and how it might be modified or improved. You do
not have to wait until then before submitting your idea; we will start looking at them from mid- April onwards. Submission
By 3pm on 18
th June 2021 should submit the following. This may be extended if you have a
support plan or extenuating circumstances. Late submissions will incur a penalty of 5% per
working day, up to 25
th June 2021, after which you will receive a mark of zero. COMP3004
A report, around 2500 words (a little longer if you need it), where you describe: The core ideas of your project; clearly state the question that you are trying to answer A review of relevant ideas, technologies and research papers
How you designed the environment and agents in order to address that question
Technologies used, and challenges that you met in doing the implementation
How you set up and ran your experiments
The results from your experiments
A discussion of the question in light of the experimental results
A conclusion, where you summarise the work, reflect on its successes and limitations, and briefly mention some ideas for how you would take the work forward if you had
more time
A copy of your code, either as an upload or a link to a repository
Anything else that you think would be helpful for the markers, e.g. sample outputs from your
system, a link to a brief video demonstrating it working, etc. COMP4105
A report, around 2000 words (a little longer if you need it), where you describe: The core ideas of your project; clearly state the question that you are trying to answer How you designed the environment and agents in order to address that question
Technologies used, and challenges that you met in doing the implementation
How you set up and ran your experiments
The results from your experiments
A discussion of the question in light of the experimental results
A conclusion, where you summarise the work, reflect on its successes and limitations, and briefly mention some ideas for how you would take the work forward if you had
more time
A report, about 1500-2000 words, where you give an extended review of relevant ideas,
technologies and research papers
A 10-minute presentation about your work (dates/times will be arranged)
A copy of your code, either as an upload or a link to a repository
Anything else that you think would be helpful for the markers, e.g. sample outputs from your
system, a link to a brief video demonstrating it working, etc. Academic Integrity
This is an individual assessment that should consist of your own unaided work. You should
make any direct quotations clear both by using quotation marks and by providing a clear
reference to the paper immediately after the quotation. If you are building on someone else’s
code (e.g. our code from the classes, open-source projects, etc.), please make it clear which
aspects of the code are your work through the use of comments. The University has detailed
advice about academic integrity, and submissions that demonstrate a lack of that integrity
will be treated under appropriate disciplinary procedures. How the Work will be Marked
Marking will take into account: background research and how you have used it to contextualise your work
the choice of task environment and how you have used it/adapted it for your specific
project the effective use of artificial intelligence and agent-based systems ideas from the
course and your wider studies in designing your autonomous agents
how clear your question(s) are, how well the experiments have been designed to
answer them, and your level of rigour in planning and analysing the experiments
how well the report answers the question by using the evidence from the experiments
the overall clarity and structure of the report, appropriate use of scientific and
technical English, and the quality of charts, diagrams, pseudocode where relevant the quality of reflection on the successes and limitations of the work
(for students doing a presentation) the structure of the presentation, the clarity of
explanations, and good use of slides or other visual aids
COMP3004 Marking Scheme
Each of the following descriptors gives a broad idea of the achievement expected for a mark
in that range. Clearly, individual projects may fall short in some areas and show excellence
in others. The marking should also be adjusted to reflect the intrinsic difficultly of the project. Band Guidelines
90-100 Marks in this range are reserved for a superb all-round performance. Work done in
all aspects of the project go beyond even high expectations. The student has
shown a thorough understanding of the problem. All expected tasks have been
successfully completed, the project shows depth and engagement with research
ideas, and everything has been completed to a high standard. The report could
form the basis of a publishable conference/workshop paper. 80-89 Excellent contributions to all areas of the project. Exceeded expectations in some
areas. Demonstrates knowledge and understanding of the project that is beyond
standard resources covered in the module. Clear appreciation of the project as a
whole, its adequacies, limitations and possibilities for future development. The
project demonstrates insight and depth beyond that usually expected in
undergraduate work. 70-79 Very good contributions to all areas of the project. Successful completion of the
project tasks. Demonstrated initiative and creative problem-solving ability. Able to
undertake the work in a competent and independent manner. Able to reflect
accurately on adequacy and limitations of the project’s achievements. 60-69 Good appreciation of background. A good attempt at applying this to the task, with
demonstrated ability to cope with difficulties. Good technical skills in several areas. Whilst most of the core aims of the project have been achieved, it might come a
little short in some areas. Good reflective understanding of the project. 50-59 Satisfactory background reading and a competent attempt at their tasks. Reasonable technical competence demonstrated. The core task completed
satisfactorily, but little achieved beyond that. Able to reflect satisfactorily on the
project. 40-49 Pass level. Competent background reading and appreciation of the project area. Basic technological competence. Some areas of the core tasks may be
incomplete, but a decent attempt has been made at them. Able to reflect in a
limited way on the project. 30-39 Unsatisfactory. Some attempt has been made at the background reading but
clearly only partial understanding of project topic. Incomplete attempt at the core
tasks. Weak technical competence. Little ability to reflect adequately on the
project. 20-29 Inadequate background reading, but shows some limited understanding of how
ideas can be linked to the task. Minimal attempt at the core tasks, showing poor
understanding. A substantial amount of work is still needed to achieve the core
tasks. Minimal reflection on the project. 10-19 Minimal attempt at background reading, inappropriate use of material, almost no
attempt at core tasks. Very poor understanding of the problem. Minimal or no
reflection on the project. 0-9 No or almost no significant attempt.
COMP4105 Marking Schemes
Each of the following descriptors gives a broad idea of the achievement expected for a mark
in that range. Clearly, individual projects may fall short in some areas and show excellence
in others. The marking should also be adjusted to reflect the intrinsic difficulty of the project. Presentation COMP4105
Band Guidelines
9-10 A professional-level presentation of exceptional clarity and very clear structure, with very high-quality slides or other visual aids that flow seamlessly with the
spoken presentation
7-8 A clearly structured presentation, which explains all aspects of the project well, and
which has high-quality slides or other visual aids that are tied in strongly with the
spoken presentation
5-6 Pass level. A competent presentation that has a decent structure, gives a
competent description of most aspects of the project, and where the slides and
other visual aids are largely clear and related to the spoken presentation
3-4 A presentation that has some level of organisation but where the topics are not
presented in a clear order or where the presentation jumps from topic-to-topic, some explanations not clear, visual aids provided but not very clear and/or not very
related to the spoken presentation
1-2 A presentation that mentions some aspects of the project work but is largely
disorganised to the point where it cannot be followed and where most explanations
are unclear, and where visual aids are unclear and/or not related to the spoken
presentation
0 No significant attempt at presentation
Review report COMP4105
Band Guidelines
90-100 A professional-level review of the literature/technology, demonstrating a clear and
deeply analytical/critical understanding of relevant work, an original structure to the
review, insightful links between the various papers and technologies reviewed
leading to an innovative thematic analysis, and a very clear link to the project work. 80-89 A clear and deeply analytical/critical understanding of relevant work, an insightful
structure to the review, a clear thematic understanding making links between the
various papers and technologies clear, and a very clear link to the project work. 70-79 A clear and analytical/critical understanding of relevant work, a structure to the
review, links between the various papers and technologies brought out, and a clear
link to the project work. 60-69 A clear understanding of relevant work with some analysis/critique, some structure
to the review, some thematic links between papers and technologies identified, and connected in parts to the project work. 50-59 Pass level. A competent understanding of relevant work with some attempt at
analysis/critique in parts, some structure to the review, occasional attempts to
make thematic links between papers and technologies, and broadly related to the
project work. 40-49 Understanding of some relevant work but incomplete/misunderstood in parts, with
little analysis/critique, largely unstructured, not many links between
papers/technologies, link with project not very clear
30-39 Some papers/technologies have been studied and there is some understanding, but much is incomplete/misunderstood/irrelevant, no meaningful analysis/critique, papers/technologies presented independently, link with project not very clear
20-29 A few papers/technologies have been looked at, but understanding is low and
there is no analysis/critique, no links between items studied, minimal structure,
little link with project. 10-19 A couple of paper/technologies have been mentioned, but with very little
understanding, no links between them or structure, and not clear how they relate to
the project
0-9 No or almost no significant attempt.
Project work COMP4105
Band Guidelines
90-100 Marks in this range are reserved for a superb all-round performance. Work done in
all aspects of the project go beyond even high expectations. The student has
shown a thorough understanding of the problem. All expected tasks have been
successfully completed, the project shows depth and engagement with research
ideas, and everything has been completed to a high standard. The report could
form the basis of a publishable conference/workshop paper. 80-89 Excellent contributions to all areas of the project. Exceeded expectations in some
areas. Demonstrates knowledge and understanding of the project that is beyond
standard resources covered in the module. Clear appreciation of the project as a
whole, its adequacies, limitations and possibilities for future development. The
project demonstrates insight and depth beyond that usually expected in
undergraduate work. 70-79 Very good contributions to all areas of the project. Successful completion of the
project tasks. Demonstrated initiative and creative problem-solving ability. Able to
undertake the work in a competent and independent manner. Able to reflect
accurately on adequacy and limitations of the project’s achievements. 60-69 Good appreciation of background. A good attempt at applying this to the task, with
demonstrated ability to cope with difficulties. Good technical skills in several areas. Whilst most of the core aims of the project have been achieved, it might come a
little short in some areas. Satisfactory or good reflective understanding of the
project
50-59 Pass level. Competent background reading and appreciation of the project area. Basic technological competence. Some areas of the core tasks may be
incomplete, but a decent attempt has been made at them. Able to reflect in a
limited way on the project. 40-49 Unsatisfactory. Some attempt has been made at the background reading but
clearly only partial understanding of project topic. Incomplete attempt at the core
tasks. Weak technical competence. Little ability to reflect adequately on the
project. 30-39 An attempt has been made at the background reading but clearly only partial
understanding of project topic. Attempt at the core tasks, but not much achieved
overall. Weak technical competence. Minimal reflection on the project. 20-29 Inadequate background reading, but shows some limited understanding of how
ideas can be linked to the task. Minimal attempt at the core tasks, showing poor
understanding. A substantial amount of work is still needed to achieve the core
tasks. Minimal reflection on the project. 10-19 Minimal attempt at background reading, inappropriate use of material, almost no
attempt at core tasks. Very poor understanding of the problem. Minimal or no
reflection on the project. 0-9 No or almost no significant attempt.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!