首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
COMP30027讲解、Python程序语言辅导 讲解Java程序|解析C/C++编程
项目预算:
开发周期:
发布时间:
要求地区:
The University of Melbourne
School of Computing and Information Systems
COMP30027 Machine Learning, 2021 Semester 1
Project 1: Pose classification with na¨ıve Bayes
Due: 7 pm, 12 April 2021
Submission: Source code (in Python) and written responses
Groups: You may choose to form a group of 1 or 2.
Groups of 2 will respond to more questions, and commensurately produce more
implementation.
Marks: The project will be marked out of 16 points (individual project) or 24 points
(group project). In either case, this project will contribute 20% of your total
mark.
Example instances from the yoga pose classification dataset
Overview
Human pose recognition, and related tasks like gesture recognition and action recognition, are important
tasks for AI systems that interact with people. There are many algorithms for classifying pose;
for example, deep convolutional neural networks can be trained to classify pose directly from images.
However, these methods tend to be “black boxes” and it’s difficult to understand what features they
are using. Another approach, which we will use in this Project, uses neural networks to first identify
keypoints corresponding to the main parts of the body (as shown above), and then learns to recognize
pose based on the positions of these body parts.
In this project, you will implement a supervised na¨ıve Bayes learner to classify pose from keypoints
provided by a deep convolutional neural network. You will train, test, and evaluate your clas-
sifier on a provided dataset, and then you will have a choice of either extending this basic model in
various ways, or using it to answer some conceptual questions about na¨ıve Bayes.
Naive Bayes classifier
There are some suggestions for implementing your learner in the “Na¨ıve Bayes” and “Discrete &
Continuous Data” lectures, but ultimately, the specifics of your implementation are up to you. Your
implementation must be able to perform the following functions:
• preprocess() the data by reading it from a file and converting it into a useful format for
training and testing
• train() by calculating prior probabilities and likelihoods from the training data and using
these to build a naive Bayes model
• predict() classes for new items in a test dataset
• evaluate() the prediction performance by comparing your model’s class outputs to ground
truth labels
Your implementation should be able to handle numeric attributes and it should assume that numeric
attributes are Gaussian-distributed. Your model will not be expected to handle nominal attributes.
Your implementation should actually compute the priors, likelihoods, and posterior probabilities
for the na¨ıve Bayes model and not simply call an existing implementation such as GaussianNB
from scikit-learn.
Keypoint diagram
Data
The data for this assignment is drawn from a yoga pose classification
dataset created by Anastasia Marchenkova and released online here.
Separate training and test datasets are provided; please report your
results on the provided test set.
The pose keypoints were produced by a computer vision algorithm
based on OpenPose. The algorithm identifies 11 keypoints on
the body and returns their x and y values. The data is provided as a
csv file; the first column is the name of the yoga pose and the remaining
columns are the keypoints (11 x values followed by 11 y values).
The body parts represented by each of the 11 keypoints are shown to
the right.
Since the keypoint data was generated by a computer vision algorithm,
it may contain some errors. Some instances have missing
keypoints because a part of the body was not visible in the original
image or the algorithm failed to detect it. Missing keypoints have x
and y values of 9999.
Implementation tips
In the training phase of your algorithm, you will need to set up data structures to hold the prior
probabilities for each class, and the likelihoods P(xi
|cj ) for each attribute xi
in each class cj . Recall
that you will need two parameters (mean and standard deviation) to define the Gaussian distribution
for each attribute × class. A 2D array may be a convenient data structure to store these parameters.
Multiplying many probabilities in the range (0, 1] can result in very low values and lead to under-
flow (numbers smaller than the computer can represent). When implementing a na¨ıve Bayes model, it
is strongly recommended to take the log() of each probability and sum them instead of multiplying.
E.g., instead of computing:
P(cj )
Y
i
P(xi
|cj ) (1)
compute:
log(P(cj )) + X
i
log(P(xi
|cj )) (2)
Questions
The following problems are designed to pique your curiosity when running your classifier(s) over the
given dataset and suggest methods for improving or extending the basic model.
1. Since this is a multiclass classification problem, there are multiple ways to compute precision,
recall, and F-score for this classifier. Implement at least two of the methods for computing multiclass
precision and recall from the “Model Evaluation” lecture slide 37 (e.g., macro-averaging)
and discuss any differences between them. (The implementation should be your own and should
not just call a pre-existing function.)
2. The Gaussian na¨ıve Bayes classifier assumes that numeric attributes come from a Gaussian distribution.
Is this assumption always true for the numeric attributes in this dataset? Identify some
cases where the Gaussian assumption is violated and describe any evidence (or lack thereof) that
this has some effect on the NB classifier’s predictions.
3. Implement a kernel density estimate (KDE) na¨ıve Bayes classifier and compare its performance
to the Gaussian na¨ıve Bayes classifier. Recall that KDE has kernel bandwidth as a free parameter
– you can choose an arbitrary value for this, but a value in the range 5-25 is recommended.
Discuss any differences you observe between the Gaussian and KDE na¨ıve Bayes classifiers.
(As with the Gaussian na¨ıve Bayes, this KDE na¨ıve Bayes implementation should be your own
and should not just call a pre-existing function.)
4. Instead of using an arbitrary kernel bandwidth for the KDE na¨ıve Bayes classifier, use random
hold-out or cross-validation to choose the kernel bandwidth. Discuss how this changes the
model performance compared to using an arbitrary kernel bandwidth.
5. Na¨ıve Bayes ignores missing values, but in pose recognition tasks the missing values can be
informative. Missing values indicate that some part of the body was obscured and sometimes
this is relevant to the pose (e.g., holding one hand behind the back). Are missing values useful
for this task? Implement a method that incorporates information about missing values and
demonstrate whether it changes the classification results.
6. Engineer your own pose features from the provided keypoints. Instead of using the (x,y) positions
of keypoints, you might consider the angles of the limbs or body, or the distances between
pairs of keypoints. How does a na¨ıve Bayes classifier based on your engineered features compare
to the classifier using (x,y) values? Please note that we are interested in explainable features
for pose recognition, so simply putting the (x,y) values in a neural network or similar to get an
arbitrary embedding will not receive full credit for this question. You should be able to explain
the rationale behind your proposed features. Also, don’t forget the conditional independence assumption
of na¨ıve Bayes when proposing new features – a large set of highly-correlated features
may not work well.
If you are in a group of 1, you will respond to two questions of your choosing (two responses in
total). If you are in a group of 2, you will respond to four questions of your choosing (four responses
in total). A response to a question should take about 150–250 words, and make reference to the data
wherever possible. We strongly recommend including figures or tables to support your responses.
Submission
Submission will be made via the LMS. Please submit your code and written report separately:
• Your code submission should be a .zip or .tar.gz file which includes your code, results files,
and any additional files we would need to run your code and replicate your results. (You don’t
need to include the dataset that we provided, but if you created separate train/validation sets
you should include those or provide the code to recreate your train/validation splits.) Please
also include a README file that tells us how to run your code and recreate your results.
• Your written report should be uploaded separately as a .pdf, using the Turnitin submission link.
If you are working in a group, please include both group members’ student id numbers on the
written report and in your code file (in the README file or a group.txt file).
Late submission
The submission mechanism will stay open for one week after the submission deadline. Late submissions
will be penalised at 10% per 24-hour period after the original deadline. Submissions will be
closed 7 days (168 hours) after the published assignment deadline, and no further submissions will be
accepted after this point.
Assessment
8 of the marks available for this assignment will be based on the implementation of the na¨ıve Bayes
classifier, specifically the four Python functions specified above. Any other functions you’ve implemented
will not be directly assessed, unless they are required to make these four functions work
correctly.
Each question is worth 4 marks. We will be looking for evidence that you have an implementation
that allows you to explore the problem, but also that you have thought deeply about the data and the
behaviour of the relevant classifier(s).
Because the number of questions depends on the group size, individual projects can receive a
total of 16 marks and group projects can receive a total of 24 marks. In both cases, the project will
contribute 20% of the final mark in this subject. In group projects, both members of the group will
receive the same mark.
Updates to the assignment specifications
If any changes or clarifications are made to the project specification, these will be posted on the LMS.
Academic misconduct
You are welcome — indeed encouraged — to collaborate with your peers in terms of the conceptualisation
and framing of the problem. For example, we encourage you to discuss what the assignment
specification is asking you to do, or what you would need to implement to be able to respond to a
question.
However, sharing materials beyond your group — for example, plagiarising code or colluding in
writing responses to questions — will be considered cheating. We will invoke University’s Academic
Misconduct policy (http://academichonesty.unimelb.edu.au/policy.html) where
inappropriate levels of plagiarism or collusion are deemed to have taken place.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!