首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
Systems编程设计讲解、辅导Java程序、c++程序调试 讲解留学生Prolog|辅导Web开发
项目预算:
开发周期:
发布时间:
要求地区:
Network Systems Integration Project - Scuba Chat
March 30, 2021
1. Objective of the integration project
Design and implement a fully distributed multi-hop ad-hoc chat application using
emulated wireless sound communication among at least 4 nodes (underwater chat
devices).
2. Details
The final integration project of Module 3 will be performed in groups of 4 students. The
goal is to design and implement the networking and application functionality for an
underwater chat application.
The chat application should be distributed and ad-hoc, i.e., it should not rely on a server
to manage connections and routing data packets among clients. The underlying physical
layer that you have to use is one based on wireless sound communications. In some
situations, e.g. underwater, the propagation of (electromagnetic) radio waves is extremely
poor. In some of these situations, wireless communications using sound waves may be
possible, be it at rather low data rates. Your chat application should use wireless
communications using sound waves, utilizing a physical layer provided by us (hence the
name scuba chat).
To allow for remote/online development, testing, and demoing, the physical layer
framework we make available supports emulated sound communications using an
Internet connection to our emulation server, which ”transmits” messages to other nodes
within the emulated range, tuned to the same channel. You will use this emulator during
development and testing. It also has to be used during your final demo.
Please consider the following issues while designing your solution:
● You need to design and implement a multi-hop ad-hoc network mechanism to
communicate at least 4 nodes, all of them running on different laptops and using
either the emulated
(https://canvas.utwente.nl/courses/7856/pages/framework-for-physical-layer) or
sound-based physical layer
(https://canvas.utwente.nl/courses/7856/pages/audio-communication-framework)
that we provide.
● Your chat service has to support reliable text broadcasting, i.e. text messages of
arbitrary length typed in any of the nodes should be delivered identically and in
the correct order to all other nodes.
● Your system should run on a single sound channel (frequency). Multiple channels
(frequencies) have been defined so that different groups can run their systems
without interfering with each other. Please find the formula to calculate your
channel frequency in http://netsys.ewi.utwente.nl/integrationproject/.
● You will have to design a mechanism for addressing.
● You will have to design a mechanism for medium access control.
● As in the real world, the range of the sound-based physical layer is rather limited,
you will have to come up with some forwarding mechanism to also exchange
packets between nodes that can reach each other only via one or more intermediate
nodes. Please note that in the emulator, the position, and hence connectivity of the
nodes can be set using the web-interface we provide.
● As in the real world, the sound-based physical layer is quite error-prone, you will
have to design a protocol for reliable data transfer.
● You need to ensure the order of sent messages at the receiving node.
● Any node in the chat application should be able to see which other nodes are
present and reachable.
● Think about the user interface (but do not invest too much time in making it
fancy).
3. Hints for getting started
You have to design and implement the system above using a sound-based physical
layer that we provide. There are two variants of this physical layer. The first one
will use your laptop’s loudspeaker and microphone to wirelessly send and receive
information using sound. Because we do not want you to sit together with your
groupmates in the same room (to avoid the risk of Corona infection), we make
available the means for emulated sound communication. This latter variant is
using a server we provide, and which you communicate to using the standard
networking facilities of your laptop.
Your program will have to connect to either the audio software or emulation
server. This will be handled for you by a small framework you can download from
Canvas (in either Java or C++). Both frameworks provide you with a queue in
which received messages will appear and a queue for data frames you want to
transmit. There are 2 messages you can send and 6 you can receive. These
messages are specified below.
Sending:
● DATA: With this message, you can send a frame of 32 bytes of data. The
framework will handle sending this to the audio interface or emulation
server, you just have to provide the bytes. If the number of bytes provided
is less than the frame length (32 bytes), the frame will be padded with
random bytes. If the number of bytes provided is more than the frame
length, the excess bytes will be discarded.
● DATA SHORT: With this message, you can send a short frame of 2 bytes
of data. If the number of bytes provided is less than 2 bytes, the frame will
be padded with random bytes. If the number of bytes provided is more than
2 bytes, the excess bytes will be discarded.
Receiving:
● BUSY: You will receive this when the channel becomes busy.
● FREE: You will receive this when the channel becomes free.
● DATA: You received a data frame, this message will contain data as bytes
(specifics depending on your programming language).
○ Note: a data frame will be received by all nodes within the
transmission range and listening to the channel of a transmitter, only
if no other node within the interference range of the receiver does a
transmission on the same channel overlapping in time.
● DATA SHORT: You received a short data frame, this message will contain
data as bytes (specifics depending on your programming language).
● SENDING: A frame has started being transmitted. You can send multiple
frames during transmission, which will be queued. You will receive this
message when each of them starts transmitting.
● DONE SENDING: You will receive this when all queued frames have
been Transmitted.
Example:
We have node A and node B, they are in the range of each other. A starts sending a
frame (DATA), it will receive SENDING and BUSY. When the data has been
transmitted it will receive DONE SENDING and FREE. During the same time
node B will have seen BUSY around the same time node A received this. B will
receive DATA and FREE once A’s transmission is complete.
You can use the webpage http://netsys.ewi.utwente.nl/integrationproject/ to view and
manipulate the (emulated) positions of your nodes and see if they are transmitting. The
help page can be found in http://netsys.ewi.utwente.nl/integrationproject/help/.
4. What to deliver?
Each group needs to deliver the following for the integration project of the module
Network Systems:
● Give a demo of your designed system:
During the final demo, you demonstrate the features of your chat
application. It is expected that you will be able to at least demo the
following features of the application:
- A simple user interface
- Presence/reachability information
- Reliable text messaging (broadcasting), even in the presence of
packet drop (emulated by our server)
- Multihop forwarding of messages to nodes only reachable via
intermediate nodes
● Submit a final report on your project: The final report should be
submitted via Canvas. Please hand in your report as a .pdf file.
● Submit the source code of your system: The source code of your project
has to be submitted in a .zip file using Canvas.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!