首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
辅导DATA3888语言编程、Java,Python,CSS程序辅导 讲解R语言编程|讲解留学生Prolog
项目预算:
开发周期:
发布时间:
要求地区:
DATA3888 (2021): Assignment 1
Question 1: Brain-box
Build a classification rule for detecting {L, R} under streaming condition where the function will take a
sequence of signal as an input. Note, this is slightly different to detecting {L, R} for a given sequence.
• (i) Estimate the accuracy of your classifier. Is your value reasonable?
• (ii) Dose the length of the sequence impact on the performance of your classifier?
Hint:
(a) Consider what metric you will use to define “performance”? You will need to explain your choice and
justify your answer.
(b) You can use data generated by either Louis (Spiker_box_Louis.zip) or Zoe (zoe_spiker.zip).
(c) The code below is a guide only, you do not need to follow the structure.
streaming_classifier = function(wave_file,
window_size = wave_file@samp.rate,
increment = window_size/10,
)
{
Y = wave_file@left
xtime = seq_len(length(wave_file@left))/wave_file@samp.rate
predicted_labels = c()
lower_interval = 1
max_time = max(xtime)*window_size
while(max_time > lower_interval + window_size)
{
upper_interval = lower_interval + window_size
interval = Y[lower_interval:upper_interval]
predicted =
predicted_labels = c(predicted_labels, predicted)
lower_interval = lower_interval + increment
} ## end while
}## end function
Question 2: Biomedical COVID19 data
Consider the prevalidation principle where a molecular signature (set of features) from a given omics
data platform is used to obtain a single variable known as prevalidated outcome. Next, we model this
prevalidated outcome in combination with the others other clinical variables to build a classifier of outcome
of interest. In this exercise, ignoring healthy individual,
1
• (i) build a classifier to predict disease outcome (moderate vs severe), including a feature selection
component on the proteomics data. Illustrate your comparison results using boxplot (similar to
the sample code in #3.6); and
• (ii) generate a prevalidated outcome from the proteomics data and use it together with the clinical
variables in a logistic regression to build a classifier.
Describe your final model for classifying severe and non-severe individuals and your estimate of its accuracy.
Note: The prevalidation procedure similar in concept to cross-validation procedure is detailed and graphically
presented below. The 5-steps are:
• Step 1. Divide the samples into k equal parts.
• Step 2. Set aside one part as the test set component.
• Step 3. A protein signature (set of features) is obtained using the training set (k − 1 parts), and a
classifier is trained on the training set on the protein signature.
• Step 4. Use this classifier to predict the survival class of the kth part (from Step 2).
• Step 5. Repeat steps 2-4 for all k parts, resulting in a prevalidated vector of estimates for the protein
data. This prevalidated vector (denoted as APV) is a complete prediction vector with one prediction
for each sample.
Question 3: Lag time estimation
For the month of March to May in 2020, estimate the lag time between number of daily new cases (new_cases)
and the number of hospital patients (hosp_patients) for all countries with data available and display
your results on the world map. Is this visualisation appropriate in this context? Please explain your response
and recommend a better choice if you don’t think this is appropriate (illustration is welcome).
[Bonus question] For the month of August to November in 2020, estimate the lag time between number
of daily new cases (new_cases) and and the number of hospital patients (hosp_patients). Compare this
estimate with the one between March to May in 2020. Describe your observation, what did you learn from
this data?
2
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!