首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
CMPT 361讲解、辅导Python,Java,CSS程序设计 辅导R语言程序|辅导R语言程序
项目预算:
开发周期:
发布时间:
要求地区:
Computing Science CMPT 361 Spring 2021
Assignment #2 (12 marks)
Written parts are exercises, no submission; solutions posted progressively over time.
Programming part due: Friday, Apr. 16, 11:45 p.m. via electronic submission.
Programming (12 marks): Shading and controlling a robotic arm
Write a program in robotArm.js and robotArm.html to display and control a robotic arm
to pick up and move a sphere. Check out the sample code by unzipping:
https://www.dropbox.com/s/xcmlx19546rcqni/robotArmSample.zip?dl=0
and look into the baseline scripts and associated shaders. Make sure that all the files reside
in the same directory when you load the WebGL code into your browser. You are to build
your program based on them, using the same file names as they are now. On the two files
robotArm.js and robotArm.html need to be modified.
The robot is composed of three parts: the base, a lower arm, and an upper arm. First, run
the sample code and see what it does by interacting with the interface and observing how
the robot arm’s movements are altered. Pay special attention to the transformations used to
control which part to rotate and how the rotation is done. Note that no collision detection
needs to be handled. Read Section 9.3 of the text on hierarchical models to learn more.
You have four tasks to complete:
● [2 mark] Model the Robot Arm: Change the dimensions
of the two arms to 2 × 0.32 and the base shape to a cylinder
with height 0.5 and both base radii 0.5, looking roughly
like the model shown in the right figure. You are free to
find resources, even a pre-defined model, for creating the
cylinder. If you used someone else’s model/code, cite it.
● [5 marks] Illumination and shading: Add Phong local
illumination and smooth polygon shading to make the robot arm object look more
realistic. It is encouraged to specify material properties that resemble those of a
metallic object. You are free to define the lighting parameters. No transparency.
But do make sure that there is specular highlight somewhere on the model.
● [2 marks] Two views: Add an additional toggle menu which alternates between
“Top View” and “Side View” when the item is selected. This menu item specifies
which view to use for the robot arm. Side view allows you to view the robot from
the side (like in the figure above) and top view is from the top. For the top view,
select your view and parallel projection parameters properly so that in top view,
o The whole robot is within your view for any possible robot movement.
o The robot base is located at the center of the window.
● [3 marks] Fetch a sphere object: Modify your program so that it accepts six
arguments as text fields instead of the original sliders:
old_x old_y old_z
new_x new_y new_z
Also, add a pressable button named "Fetch". When this button is pressed, it should
first display a solid sphere with radius 0.15, centered at (old_x, old_y, old_z), and
with material and reflectance properties defined at your choice. Feel free to use any
resources to model the sphere object, as you did for the cylinder base. Note that the
robot arm should be displayed from the start, even before pressing the button.
Then, starting from its initial position, the robot base and arms should undergo
appropriate motion (i.e., rotations, similarly to what is performed on the sample
code provided) so that the tip of the upper arm touches the sphere. At this moment,
the sphere should be picked up and attached to the upper arm and then it is moved,
by having the robot base and arms undergo appropriate motions again, to the new
location (new_x, new_y, new_z). When this is done, the robot should return to
its initial position and the sphere should remain at its new location (no gravity!).
You may assume that both input sphere locations are reachable by the robot arm. The
motion of the arm should be smooth and shown at appropriate speed.
What to submit: You should modify the sample programs into your own code, adding
extra files, if necessary. Your program should implement the two views, the input text
fields, and the “fetch” button. Submit your entire folder zipped in a single file called
robotArm.zip. You may also include a README for documentation and/or instructions.
Exercise 1: “Spinning of the wheel”
In movies and on TV, you can often see the wheels of a car appear to be spinning in the
wrong direction. What causes this artifact? Can anything be done to fix this problem?
Exercise 2: Texture mapping without distortion
What kinds of surfaces can be texture mapped (assuming that the texture is a planar image)
without any distortion? Try to provide as general an answer as possible.
Exercise 3: Mean vs. median filtering
In mean filtering of an image, we assign to each pixel (i, j) an average of a set of
neighboring pixels of (i, j). In median filtering, we take the median instead of the mean.
Please compare the two approaches in terms of quality of results and efficiency.
Exercise 4: Triangular coverage on summed area table
Describe how to efficiently compute the sum of intensities covered by an arbitrary triangle
over a texture map, using a pre-computed summed area table. You can assume that the
texture map stores one intensity value per texel and that the vertices of the triangle locate
at texel centers. Your calculation should be based purely on values stored in the summed
area table and no intersection tests between triangle edges and grid lines should be
computed. Hint: Try to cover only cases that are really distinct and use figures to assist the
description of your solution. Make you algorithm as efficient as you can.
Exercise 5: Parametric curve design
Determine the change of basis matrix for a quintic (that is, degree-5) parametric curve
which is defined by four points and two tangent vectors, as shown below. Use the transpose
of [P1 R1 P2 P3 P4 R2] as your vector of control points or observable quantities. Expressing
your solution as the inverse of a computed matrix is sufficient.
Exercise 6: Approximating a circular arc using a Bezier curve
Very efficient algorithms exist to draw cubic Bezier curves. In
fact, these algorithms are so efficient that other types of curves
are often converted to Bezier curves for display purposes. You
are to approximate a 90° circular arc (it is part of the unit circle
located in the first quadrant) with a Bezier curve. Derive the
coordinates of the four control points of a Bezier curve that
approximates the arc. This approximation should touch and be
tangent to the arc at both of its endpoints as well as at its midpoint.
P1: t = 0
P4: t = 1
P2: t = 1/3 P3: t = 2/3
R1: t = 0
R2: t = 1
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!