首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
辅导STU33009程序设计、讲解matlab编程语言 讲解SPSS|讲解Python程序
项目预算:
开发周期:
发布时间:
要求地区:
TRINITY COLLEGE DUBLIN
School of Computer Science and Statistics
Mid-Term Assignment 2020-21 STU33009: Statistical Methods for Computer Science
Submitting Your Report
• Reports must be typed (no handwritten answers please) and submitted
on Blackboard.
• As a guideline, reports should be about 5 pages in length including all
plots (please don’t go a lot over this).
• You will need to use matlab to calculate values, or alternatively write a
short program in python to do this. In either case give the code used as
an appendix to the report (it doesn’t count towards the page limit), but
please keep the code short.
• In order to obtain full credit it is essential that you explain/justify how you
obtained your results and, where appropriate, that you critically reflect
upon them. Simply giving raw numbers as answers will receive few marks
as will saying “see code for details” and the like, even if the code contains
explanatory comments.
• It is mandatory to complete the declaration that the work is entirely your
own and you have not collaborated with anyone - the declaration form is
available on Blackboard.
Downloading Data
In this assignment you will analyse the data on shopping behaviour. Start by downloading
the following dataset:
• https://www.scss.tcd.ie/doug.leith/ST3009/midterm2021.php. Important: You
must fetch your own copy of the dataset, do not use the dataset downloaded by someone
else. Keep the dataset that you download as I might request it to validate your
results.
• The data file consists of rows of data. Each row i corresponds to one supermarket
shopping basket and each column j corresponds to one item for sale. The value Zi,j
in row i, column j gives how many of the j’th item are in the i’th shopping basket.
Assignment
1. (a) Plot a histogram showing the PMF of the number of items in a basket. Hint:
Summing the values in a row gives the number of items in that shopping basket.
[5 marks]
(b) Estimate the probability P(Zi,1 = 1) that the first column in the dataset takes
value 1 i.e. that a shopping basket contains an item 1. Briefly explain/discuss
your calculation. Hint: Observe that the first column in the dataset only takes
values 0 or 1 and recall that for an indicator RV X we have P rob(X = 1) = E[X].
[5 marks]
(c) Derive a confidence interval for your estimate P(Zi,1 = 1) using the CLT and
Chebyshev Inequality. Explain/discuss your calculation. [5 marks]
(d) Suppose we require to estimate the value of P(Zi,1 = 1) to an accuracy of ±1%
with 95% confidence. How many shopping baskets would we need to collect data
from? [5 marks]
2. Your task is to explore whether the presence of item 1 in a shopping basket can be
predicted from the presence of other items in the basket. We start with whether item
2 in the basket is predictive of item 1 being in the basket. Since the first column
in the dataset only takes values 0 or 1, its conditional expectation E[Zi,1|Zi,2 =
z] = P(Zi,1 = 1|Zi,2 = z). the sum is taken over the baskets with second column equal to z, and N = |{i :
Zi,2 = z}| is the size of this set. This sample mean concentrates on E[Zi,1|Zi,2 = z]
as the number of shopping baskets observed grows.
(a) Calculate the sample mean of Zi,1 conditioned on the second column Zi,2 = z
for z = 0, 1, . . . being each of the different values that the second column takes.
Report the values in a table. Briefly explain/discuss your calculation. [5 marks]
(b) Derive confidence intervals for your estimate E[Zi,1|Zi,2 = z] using the CLT and
Chebyshev Inequality. Explain your working and extend your table from (a) to
include these intervals. [5 marks]
(c) Using the matlab errorbar() function, or python equivalent, plot your estimates
of E[Zi,1|Zi,2 = z] vs z together with their confidence intervals i.e. a plot with
z on the x-axis and the estimate of E[Zi,1|Zi,2 = z] on the y-axis, together with
error bars indicating the confidence interval around this estimate. Discuss. [5
marks]
(d) Compare your estimate of E[Zi,1|Zi,2 = z] with your estimate of E(Zi,1) from
part 1(b)-(c), bearing in mind their confidence intervals. Critically discuss
whether the presence of item 2 in the basket is predictive of item 1 being in
the basket. [5 marks]
3. (a) Repeat your analysis in 2(d) but now using only the first 100 rows from the
dataset (its enough to plot the data, no need to include a table of values). What
is the impact on the confidence intervals of using less data, and why? How does
that impact what conclusions you can draw from the data? [5 marks]
(b) Now repeat 2(d) but for E[Zi,1|Zi,3 = z] i.e. conditioned on the third column
Zi,3 = z. Compare and contrast the behaviour with that observed when conditioning
on the second column, again bearing in mind the confidence intervals.
[5 marks]
2
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!